THE PI AND VERTEX PI POLYNOMIAL OF A T-BENZYL-TERMINATED AMIDE-BASED DENDRIMERS

MOHAMMAD ADABITABAR FIROZJA ${ }^{\text {a }}$, GHOLAMHOSSEIN FATHTABAR ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics, Qaemshahr Branch, Islamic Azad University, Qaemshahr, I. R. Iran
${ }^{b}$ Department of Mathematics, Faculty of Science, University of Kashan, Kashan 87317-51167, I. R. Iran

Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a simple connected graph. Let $\mathrm{e}=\mathrm{uv} \in \mathrm{E}(\mathrm{G})$ and $m_{u}(e)$ be the number of edges closer to u than vand $m_{v}(e)$ be the number of edges closer to v than u. Then the $\operatorname{PI}(\mathrm{G}, \mathrm{x})$ of the graph G is defined as $\operatorname{PI}(G)=\sum_{e=u v} x^{m_{u}(e)+m_{v}(e)}$. We compute the PI vertex PI polynomial of this dendrimer.
(Received October 2, 2009; accepted November 23, 2009)
Keywords: PI Index, PI Polynomial, Dendrimer

1. Introduction

Let G be a simple connected graph. We denote the vertex set and the edge set of a graph G by $V(G)$ and $E(G)$, respectively. For notation and graph theory terminology not presented here, we follow [1-7].

Let G be a graph and P is a property on G . A counting polynomial for G is a polynomial as $\mathrm{P}(\mathrm{G}, \mathrm{x})=\sum_{\mathrm{k}} \mathrm{P}(\mathrm{G}, \mathrm{k}) \mathrm{x}^{\mathrm{k}}$, where $\mathrm{P}(\mathrm{G}, \mathrm{k})$ is the frequency of occurrence of the property P of length k and x is simply a parameter to hold k [3].

A topological index of a graph is a number related to a graph which is invariant under graph automorphisms. It is easy to see that every topological index defines a counting polynomial and vice versa. The simplest topological indices are the number of vertices and edges of the graph. The Wiener index (W) is the oldest topological indices $[12,13]$.

Let G be a simple graph. The $\operatorname{PI}(G)$ defined as $P I(G)=\sum_{e=u v} m_{u}+m_{v}$. Where $m_{\mathrm{u}}(\mathrm{e})$ is the number of edges closer to u than v and $m_{v}(e)$ is the number of edges closer to v than $u[8]$. The PI polynomial of G defined as $P I(G, x)=\sum_{e=u v} x^{m_{u}(e)+m_{v}(e)}$. It is clear that the derivation of $\operatorname{PI}(G, x)$ for $x=1$ is $\operatorname{PI}(G)$.

The $\mathrm{PI}_{\mathrm{v}}(\mathrm{G})$ defined as $P I_{v}(G)=\sum_{e=u v} n_{u}+n_{v}$. Where $\mathrm{n}_{\mathrm{u}}(\mathrm{e})$ is the number of vertices closer to u than v and $n_{v}(e)$ is the number of vertices closer to v than u. The P_{v} polynomial of G defined as $P I_{v}(G, x)=\sum_{e=u v} x^{n_{u}(e)+n_{v}(e)}$. It is clear that the derivation of $\mathrm{PI}_{v}(\mathrm{G}, \mathrm{x})$ for $\mathrm{x}=1$ is $\mathrm{PI}_{\mathrm{v}}(\mathrm{G})[8-13]$. Throughout this paper our notation is standard and taken mainly from the standard book of graph theory and $[14,15]$. We present some theorems that we need in this paper.

[^0]Theorem A[12]. $\operatorname{PI}(\mathrm{G})=|\mathrm{E}|^{2}-\sum_{e=u v} N(e)$ where $\mathrm{N}(\mathrm{e})=|\{\mathrm{xy} \mid \mathrm{d}(\mathrm{x}, \mathrm{e})=\mathrm{d}(\mathrm{y}, \mathrm{e})\}|$.
Theorem B. $\operatorname{PI}(\mathrm{G}, \mathrm{x})=x^{|E|} \sum_{e=u v} x^{-N(e)}$.
Theorem C. $\mathrm{PI}_{v}(\mathrm{G})=|\mathrm{E}(\mathrm{G})| \cdot|\mathrm{V}(\mathrm{G})|-\sum_{e=u v} N(e)$. Where $\mathrm{N}(\mathrm{e})$ is the number of vertices of G with $d(x, u)=d(x, v), x \in V(G)$.

Theorem D. $\mathrm{PI}_{\mathrm{v}}(\mathrm{G}) \leq|\mathrm{E}(\mathrm{G})| \cdot|\mathrm{V}(\mathrm{G})|$ with equality if and only if G is a bipartite graph.

2. Main results

In this paper, we compute the PI index and PI Polynomial of Dendrimer NS(n) where NS(n) is the following Nano Star.

Construction of N-benzyl-terminated amide-based dendrimers.
Lemma. $\mid \mathrm{V}\left(\mathrm{NS}(\mathrm{n}) \mid=3.2^{\mathrm{n}+4}-8\right.$ and $\mid \mathrm{E}\left(\mathrm{NS}(\mathrm{N}) \mid=52.2^{\mathrm{n}}-8\right.$.

Theorem 1. If G is the Nano star $\operatorname{NS}(n)$ then $\operatorname{PI}(\operatorname{NS}(n), x)=6.2^{n+2} x 52.2^{n}-10+\left(28.2^{n}-8\right)$ $x^{52.2^{n}-9}$ and $P I(N S(n))=\left(52.2^{n}-8\right)\left(52.2^{n}-8-1\right)-6 \times 2^{n+2}$.

Proof. Let $\mathrm{e}=\mathrm{uv}$ be an edge on hexagon then $m_{u}(e)+m_{v}(e)=m-2=52.2^{\mathrm{n}}-8-2=52.2^{\mathrm{n}}-$ 10. A simple coputation shows that if $\mathrm{e}=\mathrm{uv}$ is not an edge on hexagon then we can see that $m_{u}(e)+m_{v}(e)=m-1=52.2^{\mathrm{n}}-9$. Thus

$$
\begin{aligned}
& \operatorname{PI}(\mathrm{NS}(\mathrm{n}), \mathrm{x})=6.2^{\mathrm{n}+2} \mathrm{x}^{52.2^{n}-10}+\left(28.2^{\mathrm{n}}-8\right) \mathrm{x}^{52.2^{n}-9} \\
& \quad \operatorname{PI}(N S(n))=\left(52.2^{\mathrm{n}}-8\right)\left(52.2^{\mathrm{n}}-8-1\right)-6 \times 2^{\mathrm{n}+2} .
\end{aligned}
$$

Theorem 2. $\mathrm{PI}_{\mathrm{v}}(\mathrm{NS}(\mathrm{n}), \mathrm{x})=x^{3.2^{n+4}-8}$ and $\mathrm{PI}_{\mathrm{v}}(\mathrm{NS}(\mathrm{n}))=\left(3.2^{\mathrm{n}+4}-8\right)\left(52.2^{\mathrm{n}}-8\right)$.
Theorem 3. If G be a connected graph with k disjoint even r-cycle then $\operatorname{PI}(G)=m^{2}-m-k r$.
Proof. If e be in $\mathrm{E}(\mathrm{G})$ then $\mathrm{N}(\mathrm{e})=1$ otherwise $\mathrm{N}(\mathrm{e})=0$. By Theorem $\operatorname{API}(\mathrm{G})=\mathrm{m}^{2}-\mathrm{m}-\mathrm{kr}$.

References

[1] Ashrafi A R \& Alipour M A, Digest Journal of Nanomaterials and Biostructures 4, 1 (2009).
[2] Ashrafi A R \& Nikzad P, Digest Journal of Nanomaterials and Biostructures 4, 269 (2009).
[3] A. R. Ashrafi, M. Faghani, S. M. Seyedaliakbar, A. R. Ashrafi, P. Nikzad, Digest Journal of Nanomaterials and Biostructures 4, 59 (2009).
[4] Ashrafi A R \& Saati H, J Comput Theor Nanosci, 4, 761 (2007).
[5] Ashrafi A R \& Loghman A, MATCH Commun Math Comput Chem, 55, 447 (2006).
[6] Ashrafi A R \& Loghman A, J Comput Theor Nanosci, 3, 378 (2006).
[7] Ashrafi A R \& Rezaei F, MATCH Commun Math Comput Chem, 57, 243 (2007).
[8] Ashrafi A R \& Loghman A, Ars Combinatoria, 80, 193 (2006).
[9] Ashrafi A R and Rezaei F, MATCH Commun. Math. Comput. Chem., 57, 243 (2007).
[10] Diudea M V, MATCH Commun. Math. Comput. Chem., 45, 109 (2002),.
[11] Fath-Tabar G. H, Digest Journal of Nanomaterials and Biostructures 4, 189 (2009).
[12] Fath-Tabar G H, Najafi M J and Ashrafi A R, MATCH Commun Math Comput Chem(in press)
[13] Fath-Tabar G H, Iranian Journal of Mathematical Sciences and Informatics, 2(2007)29.
[14] Wiene H.r , J. Am. Chem. Soc., 69, 17 (1947)
[15] Ashrafi A R, B. Bull. Iranian Math. Soc., 33, 37 (2007).

[^0]: - Corresponding author. e-mail: fathtabar@kashanu.ac.ir

