A STUDY OF THE OPTICAL PROPERTIES OF UN-DOPED AND POTASH **DOPED LEAD CHLORIDE CRYSTAL IN SILICA GEL.**

U.V. OKPALA^{*}, F.I. EZEMA^a, R.U. OSUJI^a

Department of Industrial Physics, Anambra State University, Uli, Anambra State ^aDepartment of Physics and Astronomy, University of Nigeria, Nsukka, Nigeria

The optical properties of potash doped lead chloride (PbCl₂) have been studied by sol gel technique. The optical properties of the materials were determined using a JENWAY 6405 UV-VIS spectrophotometer operating at a wavelength range of 200nm to 1200nm at an interval of 5nm. It was observed that the crystals are optically transparent. The average refractive index (n) is between 0.6 and 2.9. The refractive index greater than 2.0 makes the crystals good materials for protective coatings. The band gaps are from 3.9 to 5.0 showing that they are wide band gap materials and are good refractory materials.

(Received February 6, 2012; Accepted June 15, 2012)

Keywords: Sol gel, Optical Properties, Silica Model and Local Impurities.

1. Introduction

Sol-gel is a liquid based deposition technique, [Hench et-al., (1990) and Klein, (1994)]. It is a wet chemical technique widely used in the fields of materials science and ceramic engineering primarily for the fabrication of materials starting from a chemical solution which acts as the precursor for an integrate network (or gel) of either discrete particle or network of polymers, Allman, (1983). A gel is a colloidal system in which the dispersed substance forms a continuous, ramifying, space-enclosing cohesive framework, Thewils, (2000). The gel medium prevents turbulence, and remaining chemically inert, provides a three-dimensional structure which permits the reagents to diffuse at a desirable controlled rate.

Sol gel is used in the manufacture of multi component glasses, coatings, fibres monoliths, thermal insulation materials, controlled particle size powders, as well as special types of ceramics such as electronic ceramics, superionic conductors and high temperature superconductors, [Roy, (1999); Ulrich, (2004); Dardel, (2003) and Biecker et-al., (2001)]. It is also used in the study of physical, chemical, electrical and magnetic properties of some materials as described in literature [Bandgopadhyay et-al., (2002); Gracium et-al., (2003); Yoshihara (1997) and Mandla et-al., (2007)].

1.1. Lead Chloride Crystal (PbCl₂).

Lead chloride is a halide crystal which occurs naturally in the form of mineral cotunnite. It is used in the production of infra red transmitting glass and basic chloride of lead known as patteson's white lead, Perry, (2007), ornamental glass called aurene glass, stained glass. It is also used as an intermediate in refining bismuth (Bi) ore, it is used in the synthesis of organometallic (metallecene or plumbocenes), lead titanate and barium titanate [Aboujali, (1998) and Lowack, (1994)]. The structure of PbCl₂ is orthorhombic dipyramidal. In this work, local potash which is a polymer in nature was used as dopant.

^{*}Corresponding author: ifarauc@yahoo.com

(a) Potash

Potash is a term coined by early American settlers who produced potassium carbonate by evaporating water filtered through wood ashes. The ash like crystalline residue remaining in the large iron pots was called 'potash' and was used in making soap. Potash (or carbonate of potash) is an impure form of potassium carbonate (K_2CO_3) mixed with other potassium salt. Potash has been used since antiquity in the manufacture of soap, glass and fertilizer, Nichol, (2008). Top-down approach was used to put potash into nano scale. Local potash is got by burning woods like tree fiber (ngu).

2. Experimental details

In growing (PbCl₂), 100ml beaker was added with 25ml of sodium silicate solution of pH eleven. It was titrated with some quantity of 1M of tartaric acid. The mixture forms gel at pH 8. The set gel was added with 20ml of 1M of lead nitrate solution to give lead tartan ate as in equation (1.1),

$$Pb (NO_3)_2 + H_6C_4O_6 \rightarrow PbH_4O_6 + 2HNO_3$$
(1.1)

The lead tartanate is generated in the gel as a white column, ring system of gradually increasing thickness. The precipitation of lead tartanate completed within a fortnight. 20ml of 1N of hydrochloric acid (HCl) placed over the set gel to give,

$$PbH_4C_4O_6 + 2HCl \rightarrow PbCl_2 + H_6C_4O_6$$
(1.2)

And different concentrations of potash 0.5 and 0.8 normalities of locally produced impurity were also placed over the set gel. The HCl reacted with the colloidal precipitate of lead tartanate producing lead chloride (PbCl₂) which grew down into the gel as luminescent needles. The grown crystals were dried and adequately described through optical characterization (UV-VIS analysis) and structural analysis (XRD and FTIR). The quantity of the precursor materials used is as shown on table 1.

Sample	Amount of sodium silicate (Na ₂ SiO ₃) (g)	Amount of Pb(NO ₃) ₂ (ml)	Amount of tartaric	Concentration of K ₂ CO ₃
А	25.0	20	Some quantity	Un-doped
В	25.0	20	"	0.5
С	25.0	20	"	0.8

Table 1: Quantity of reagents used in the growth.

2.1. Drying

The samples were first treated with all glass distilled water to avoid impurities and made slurry before it was introduced into a Buckner funnel covered with filter paper then attached to a suction flask connected to the vacuum pump through its nozzle. When the pump was put on it created a vacuum that allowed for the absorption of H_2O from the sample. The filter in the Buckner funnel prevented the solid from being sucked. The sample was then taken to the oven at an appropriate temperature of $104^{0}C$ for 30 minutes. After which it was placed inside the desiccators to maintain dryness. CaCl₂ was used as a desiccant.

3. Results and discussions

3.1. Optical analysis

The optical studies for the sol gel grown crystals were done using a JENWAY 6405 UV-VIS spectrophotometer operating at a wavelength range of 200nm to 1200nm at intervals of 5nm. In the optical absorption study, deionised water was used as reference. The crystal samples were dissolved in deionised water forming a colloidal solution which was then subjected to UV-VIS analysis.

Figs. 1-4: Optical Analysis for Un-doped and Potash doped PbCl₂.

wavelegth (nm) Fig. 2. A plot of transmittance (T) against wavelength (nm)

Fig. 3. A plot of reflectance (R) against wavelength (nm)

Fig. 4. A plot of absorption coefficient (α) against photon (eV)

S /	Com	Арр	Absorbance	Transmittance	Reflectance	Absorptio	Usage
n	pd.	endi	(A)	(%T)	(%R)	n	
		Х				coefficien	
						t (α)	
1	PbCl ₂	1	Sample A is	Sample A is	Samples A	Samples	The samples
			highly	highly	and B are	A and B	can be used
			absorbing in	transmitting	highly	have	in cold
			the VIS region	from the VIS to	reflecting in	absorption	regions to
			and decreased	the IR regions	the VIS and	coefficient	warm rooms
			towards the IR	while samples B	decreased	between 0	and in the
			but B and C	and C are	towards the	and 1	coating of
			are moderately	moderately	IR but	while C	poultry roofs
			absorbing in	transmitting in	sample C	has no	and walls,
			the VIS and	VIS region and	has very low	absorption	Ezema,
			decreased	increased	reflectance	coefficient	(2006).
			towards the IR	towards the IR.	in the VIS		
			region.		and no		
					reflectance		
					in the IR		
					region.		

Table 2: Results of optical properties for un-doped and potash doped PbCl₂.

Figs. 5-8: Graph of Optical constants for un-doped and Potash doped PbCl₂.

Fig. 5. A plot of refractive index (n) against photon energy (eV)

Fig. 7. A plot of real dielectric (\mathcal{E}_r) against photon energy (eV)

Fig. 8. A plot of imaginary dielectric (ε_i) against photon energy (eV)

Table 3: Result	for opti	cal constant	t for dop	ped and	un-doped	$PbCl_2$
-----------------	----------	--------------	-----------	---------	----------	----------

S/n	Compound	Sample	Refractive index (n)	Extinction coefficient	Real dielectric	Imaginary dielectric (ε _i)
				$(k x 10^6 m^{-1})$	constant (€ _r)	
1	PbCl ₂	А	All the	Sample A	Samples A,	Samples A and
		В	samples	has the	B and C have	B have
		С	have very	highest	real	imaginary
			high	extinction	dielectric	dielectric
			absorption	coefficient	between 1	between 10 and
			coefficient	followed by	and 5.1.	110 but C has
			between 1	B but C has		no imaginary
			and 2.4	little or no		dielectric.
				extinction		
				coefficient.		

Figs. 9-12: Optical band gaps for un-doped and doped lead chloride (PbCl₂).

Fig. 9: A plot of $(\alpha hv)^2$ against photon energy (eV)

Fig. 10: A plot of $(\alpha hv)1/2$ against photon energy (eV)

Fig. 11.: A plot of $(\alpha hv)^{2/3}$ against photon energy (eV)

Fig. 12: A plot of $(\alpha hv)^{1/3}$ against photon energy (eV)

866

S/n	Compound	Sample	$(\alpha hv)^2$	$(\alpha hv)^{\frac{1}{2}}$	$(\alpha hv)^{1/3}$	$(\alpha hv)^{2/3}$	Usage
1	PbCl ₂	Α	3.9	3.3	4.0	4.0	Wide band
							gap materials
							can be used in
							high power,
							high
							temperature,
							and high
							frequency and
							optoelectronic
							devices,
							Yacobi,
							(2004).
	PbCl ₂	В	4.3	4.0	4.0	4.2	Wide band
							gap materials
							can be used in
							high power,
							high
							temperature,
							and high
							frequency,
							optoelectronic
							devices and
							as heat sink.
	PbCl ₂	С	5.0	4.2	4.5	4.6	Wide band
							gap materials
							can be used in
							high power,
							nıgn
							temperature,
							and nign
							irequency,
							optoelectronic
							devices and
							as neat sink,
							(2004)
							(2004).

Table 4: Result for optical band gaps for un-doped and potash doped PbCl₂

3.2. X Ray Diffraction (XRD).

X ray diffraction analysis (XRD) was used to uniquely identify the crystalline phases present in the crystals and to study the structural properties. The XRD characterization of the samples was carried out using MD-10 Diffractometer, which recorded diffractograms using CuKa radiation. Diffraction patterns of the samples were recorded in the 20 range from 10° to 72°. XRD spectra in the figures revealed that the compounds grown are crystalline in nature. For each spectrum, the crystallite size D, was determined using the Debye Scherer formula [Haung et-al., (2006); Pradha et-al., (2005); Amma et-al., (2005); Chahal, (2010); Ezema, 2006 and Kondawar, (2010)] as given below:

$$D = K\lambda/\beta \cos\theta \tag{1.3}$$

Where K = 0.9 is the shape factor, $\lambda = 1.5409$ Å, θ is the diffraction peak angle (Bragg's Angle) in degrees and β is the corresponding diffraction peak. The XRD result is shown on table 5.

20 Fig. 13. XRD spectra for potash un- doped PbCl₂.

2θ Fig. 14. XRD spectra for 0.5N potash doped PbCl₂.

 $2\theta^{\circ}$ Fig. 15. XRD spectra for 0.8N potash doped PbCl₂.

Table 5: XRL	results for	un-doped	and potash	doped	$PbCl_2$.
--------------	-------------	----------	------------	-------	------------

S/ n	Compo und	Sample	Concent ration	20	Crystallite size (nm)	FWHM	Effect/result.
			of impurity				
1	PbCl ₂	Α	0	24.59,26.41,	0.7740,1.6968,	1.7852,0.8172,5.2	Presence of very
				28.82, 33.16	0.2651,1.5903	573,0.8857	sharp peaks and
							reduced crystallite
							size [Amma et-al.,
							(2005); Chahal et-
							al., (2010) and
							Ezeama (2006)].
1	PbCl ₂	В	0.5	29.73, 26.66	0.2248,0.3417,1.6	0.8079,4.0605,0.8	Presence of very
				32.20, 32.91	575,2.3983	478,0.5869	sharp peaks and
							reduced crystallite

							size.
1	PbCl ₂	С	0.8	20.00,21.19,	4.3298,1.4055,2.5	0.3166,0.9772,0.5	Presence of very
				21.85,22.80	058,1.9950	487,0.6903	sharp peaks and
							reduced crystallite
							size, Kondawar,
							(2010).

4. Conclusion

Sol-gel deposition technique has been successfully used to grow crystals of un-doped and potash doped lead chloride. Crystals grown in this study have made it possible for the following conclusions:

• Local materials from African environment can affect the optical and structural properties of semi conductor materials/crystals as seen in the crystallite size.

• The transparency of $PbCl_2$ decreased from 100-40% with increasing concentration of the dopant.

• The band gap lies from 3.9eV to 5.0eV, this shows that they are wide band gap semi conductors and can be employed in high power, high temperature, high frequency materials, optoelectronic devices and as heat sink, Yacobi, (2004).

• The reduced particle size from 0.2nM to 2.5nM is a function of the broadness of the peaks and as such makes them good nano materials [Amma et-al., (2005); Chahal et-al., (2010) and Ezema (2006)]

• The sharpness of the peaks indicates that they are highly crystalline and as such are semiconductor materials that can be employed in solar energy applications.

References

[1] L.A. Aboujali Journal of Material Chemistry, 8:1601-1606. (1998)

- [2] iii R.M. Allman "Sol- gel Process", UCLA School of Engineering and Applied Science. Wikipedia: the free Encyclopedia, 1 (1983).
- [3] B.S.Amma, K.Ramakrishna Pattabi M. Materials Chemistry and Physics, **112**, 789-792. (2005),
- [4] Bandgopadhyay S., Paul G.K. and Sen S.k. Journal of Solar Energy Materials and Solar Cells, 71,103. (2002)
- [5] Biecker F.J., Heckmann W, Fischer F., Mieke M., Schroeder J. and Stange A. (2001) Structural Analysis of Granular Silica Aerogels, in: Physics Ut Vii, (Heidelberg, New York: Springer Verlag) 123
- [6] Chahal R.P., Mahendia S., Tomar A.K. and Kuma S. Chalcogenide Letters, 7(8), 569-575 (2010).
- [7] Dardel G., Henning S. and Svensson L. European Patent Specification 0018955BI. (2003)
- [8] Ezema F. I., Journal of Applied Sciences, 6(8) 1827-1823. (2006)
- [9] Klein L., "Sol-gel Optics: Processing and Applications", Springer Verlag. (1994)
- [10] Kondawar S.B. Arch.Apll.Sc.Res., 2(3) 225-230. (2010)
- [11] Lowack R.H. Journal of Organometalic Chemistry, 476: 25-32. (1994).
- [11] Gracium G., Buiu O., Paszti F., Cobianu C. and Savaniu Vasile E., Paper presented at Semiconductor Conference, IEEE Xplore 2.0., 1:185. (2003).
- [12] Haung J.H. and Liu C.P., Thin Solid Films, **498**, 152-156. (2006)
- [13] Hench L.L. and West J.K. "The Sol-gel Process", Chemical Reviews 90, 33 (1990)
- [14] Mandla A. and Li- Pin S., Journal of Chemical Technology Research, 4, 383. (2007)
- [15] Nichol R.B. "Better Crops with Plant Food', Potash and Phosphate Institute", 78. (2008)
- [16] Ochuenwike C.C. 'Crystal Growth by Gel Method', Unpublished M.Sc. Thesis, 77-80. (1986).
- [17] Perry and Philips, "Handbook of Inorganic Compounds" 213. (1995)
- [18] Roy R. "HTSC: Restoring Scientific and Policy Perspective, in: C.G. Burnham, R.D.

Kane, eds. Proceedings of World Congress on Superconductivity". World Scientific, Singapore, 29. (1999)

- [19] Pradha A.K., Hunter D., Zhang K., Dadson J.B., Mohanty S., Williams T.M., Lord K., Rakhiimov R.R., Roy U.N., Cui Y, Burger A., Zhang J. and Sellmyer D.J. Applied Surface Science, 252: 1628-1633. (2005)
- [20] Yacobi B.G. <u>Semiconductor Materials</u>, (New York: Kluwer Academic Publisher) 148-151. (2004)
- [21] Yoshihara S. "Photo catalytic Film Prepared by Electrophoresis Sol-gel Deposition", Paper Presented at Semiconductor Conference, I.E.E. Xplore 2.0., 2:173. (1997).
- [22] Ulrich D.R. "Chemical Processing Ceramics", Chem. Eng. News, 29. (2004)
- [23] Thewils J. Encyclopedic Dictionary of Physics (Oxford: Pergamon Press) 3, 429. (2000)

870