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A series of 33 Compounds antihypertensive drugs 2-butylbenzimidazoles derivatives were 
subjected to quantitative structure activity relationship analysis with an attempt to derive a 
correlation between the biological activity as dependent variable and various descriptors as 
independent variables by using V-Life MDS 3.5. Negative logarithmic value of (–PMIC) 
was taken as dependent variable, chi3Cluster, T_2_Cl_6, XlogP, T_N_N_slogp, 
T_O_Cl_5 was taken as independent varable.Docking studies of all compounds using 
Biopredicta V-Life MDS 3.5,all the molecules docked and scores were calculated and 
most active compound has high score and successfully docked into the active site  This 
study can help in rational drug design and synthesis of new angiotensin II antagonists as 
antihypertensive with predetermined affinity. 
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1. Introduction 
 
Quantitative structure-activity relationship (QSAR) studies represent a powerful tool for 

relating the biological activities of compounds to their physicochemical properties, which are 
referred to as descriptors [1] QSAR has been traditionally perceived as a means of establishing 
correlation between trend in the chemical structure modifications and respective changes of 
biological activity, Computational chemistry has developed into an important contributor to 
rational drug design. Quantitative structure activity relationship (QSAR) modelling results in a 
quantitative correlation between chemical structure and biological activity. [2] In the field of 
molecular modeling, docking is a method which predicts the preferred orientation of one molecule 
to a second when bound to each other to form a stable complex.[3] Knowledge of the preferred 
orientation in turn may be used to predict the strength of association or binding affinity between 
two molecules using for example scoring functions. Molecular docking can be thought of as a 
problem of “lock-and-key”, where one is interested in finding the correct relative orientation of the 
“key” which will open up the “lock” (where on the surface of the lock is the key hole, which 
direction to turn the key after it is inserted, etc.). Here, the protein can be thought of as the “lock” 
and the ligand can be thought of as a “key”. Molecular docking may be defined as an optimization 
problem, which would describe the “best-fit” orientation of a ligand that binds to a particular 
protein of interest. However since both the ligand and the protein are flexible, a “hand-in-glove” 
analogy is more appropriate than “lock-and-key”. [4] The renin-angiotensin system (RAS) is of 
major importance in cardiovascular and renal regulation and has been an attractive target in drug 
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discovery for a long time. The renin-angiotensin system (RAS) plays a key role in regulating 
cardiovascular homeostasis and electrolyte/ fluid balance in normotensive and hypertensive 
subjects The main receptors involved in the RAS are the Angiotensin type-1 (AT1 and type-2 (AT2) 
receptors, both activated by the endogenous octapeptide angiotensin II (AngII) [5]  The AT1 receptor 
is well studied and is mainly known for regulating blood pressure and there are a number of AT1 
receptor selective antagonists on the market today used for treating hypertension. The AT2 receptor 
is less well-understood and interestingly the stimulation of the AT1and AT2 receptors has, in many 
cases, direct opposing effects [6] The clinical success achieved by angiotensin converting enzyme 
(ACE) inhibitors in the treatment of hypertension and congestive heart failure has made the RAS a 
major focus for the discovery of novel antihypertensive agents However, ACE also has kininase 
activity, and this lack of specifity has been implicated in the occasional side effects of ACE 
inhibitors such as dry cough and angioedema With the development of ang II receptor antagonists, 
a more specific attempt to inhibit the activity of the RAS has become the main pharmacological 
approach. All major pharmaceutical companies embarked on a fast follower program immediately 
thereafter. Today, irbesartan, candesartan, and valsartan are all established in the market, and 
others, e.g., tasosartan and telmisartan, are following closely (Figure 1). Some further 20 
compounds are in development. Most of these compounds share the biphenyl tetrazole unit or 
replacements thereof with the original, advanced lead losartan. [7] Almost all of the chemical 
manipulations within the fundamental skeleton of sarans concerned the substitution of the 
imidazole ring of losartan with several variously substituted hetero aromatic groups or acyclic 
structures. 

The Renin Angiotensin system plays a central role in the regulation of blood pressure and 
electrolyte balance. The inhibition of this system has been an important target in antihypertensive 
therapy. 

Angiotensin II receptor Antagonists supersedes the use of ACE inhibitors because of the 
following reasons: 

 They block the conversion of Angiotensin I to Angiotensin II but they do not block the 
production of Angiotensin II by non- ACE mechanisms. 

 Angiotensin II levels are not suppressed completely. 
 Angiotensin II levels decrease temporarily but they return to normal levels after few 

weeks. 
 They lead to accumulation of bradykinin levels on the biological fluids. 

 
Adverse effect like angio-edema and dry cough are reported. 

 
 

Fig: 1 Losartan 
 
                                                                

2. Experimental  
 
We report our attempt to rationalize the physico-chemical and structural features among 

series of substituted 2-butylbenzimidazoles bearing biphenyl methyl moiety derivatives in 
relation to their angiotensin II receptor antagonist’s activity using QSAR approach. The 
angiotensin II receptor antagonists activity data of 2-butylbenzimidazoles derivatives were taken 
from the reported work of Kubo et al. [8]   and are presented in Table 1. The biological 
activity data (IC50 in Molar) were converted in to pIC50 according to the formula pIC50 = (-log 
(IC50). Thus such studies may help for the design and synthesis of better angiotensin II receptor 
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antagonists as antihypertensive agents. All the thirty four compounds were built on workspace of 
molecular modeling software V-Life MDS 3.5, which is a product VLife Sciences Pvt Ltd., India 
[9].The compounds were then subjected to conformational analysis and energy minimization using 
montocarlo conformational search with RMS gradient of 0.001 kcal/mol and iteration limit of 10000 
using a MMFF94 force field. Montocarlo conformational search method is similar to the RIPS 
method that generates a new molecular conformation by randomly perturbing the position of 
each coordinate of each atom in molecule, followed by energy minimization and optimization is 
necessary process for proper alignment of molecules around template. Most stable structure for 
each compound was generated after energy minimization and used for calculating various physico-
chemical descriptors like thermodynamic, steric and electronic. The various descriptors selected 
for 2D QSAR were vdWSurfaceArea (van der Waals surface area of the molecule), –vePotential 
Surface Area (total van der Waals surface area with negative electrostatic potential of the 
molecule), +vePotentialSurfaceArea (total van der Waals surface area with positive electrostatic 
potential of the molecule) dipole moment, YcompDipole (y component of the dipole moment), 
element count, slogP, path count, cluster, distance based topological indices, connectivity index, 
hydrophobic and hydrophilic areas like SA Most Hydrophilic (Most hydrophilic value on the vdW 
surface by Audry Method using Slogp), SAMostHydrophobicHydrophilic Distance (distance 
between most hydrophobic and hydrophilic point on the vdW surface by Audry Method using 
Slogp), SAHydrophilicArea (vdW surface descriptor showing hydrophilic surface area by Audry 
Method using SlogP) and SKMostHydrophilic (Most hydrophilic value on the vdW surface by 
Kellog Method using Slogp), radius of gyration, Wiener’s index, moment of inertia, semi- 
empirical descriptors, HOMO (Highest occupied molecular orbital), LUMO (lowest unoccupied 
molecular orbital), heat of formation and ionization potential. Besides these all alignment 
independent descriptors were also calculated. The hydrophobic descriptors govern the movement 
of a drug molecule across the biological membranes in order to interact with the receptor by van 
der Waals binding forces whereas both electronic and steric descriptors influence the affinity of a 
drug molecule necessary for proper drug- receptor interaction. The optimal training and test sets 
were generated by either random selection method or the sphere exclusion algorithm. A commonly 
used ratio of training to validation objects (test set), which was also adopted in this work, is 70%: 
30% [10]. However, rational splitting was accomplished by applying a sphere-exclusion type 
algorithm [11-14]. In classical sphere-exclusion algorithm the molecules are selected whose 
similarities with each of the other selected molecules are not higher than a defined threshold. Each 
selected molecule generates a hyper-sphere around itself, so that any molecule inside the sphere is 
excluded from the selection in the train set and driven toward the test set. The number of 
compounds selected and the diversity among them can be determined by adjusting the radius of 
the sphere (R). 

 
Statistical analysis 
Models were generated by using three significant statistical methods, namely, partial least 

square analysis, multiple regressions, and principle component analysis. The cross-validation 
analysis was performed using the leave-one-out method. In the selected equations, the cross-
correlation limit was set at 0.5, the number of variables at 10, and the term selection criteria at r2. 
An F value was specified to evaluate the significance of a variable. The higher the F value, the 
more stringent was the significance level: F test ‘‘in’’ as 4 and F test ‘‘out’’ as 3.99. The variance 
cutoff was set at 0, and scaling was auto scaling in which the number of random iterations was set 
at 100.The following statistical parameters were considered for comparison of the generated 
QSAR models: correlation coefficient (r), squared correlation coefficient (r2), predictive r2 for 
external test set (pred r2) for external validation, and Fischer’s (F).The predicted r2 (pred_r2) 
value was calculated using Eq. 1, where yi and yˆi are the actual and predicted activities of the ith 
molecule in the test set, respectively, and ymean is the average activity of all molecules in the 
training set. Both summations are over all molecules in the test set. The pred_r2 value indicates the 
predictive power of the current model for the external test set as follows 
 

∑ (yi-yˆi) 2 
    pred_r2 = 1 -                                                                                           (1) 

∑ (yi-ymean) 2 
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Internal validation was carried out using leave-one-out (q2, LOO) method. For calculating q2, 
each molecule in the training set was eliminated once and the activity of the eliminated molecule 
was predicted by using the model developed by the remaining molecules. The q2 was calculated 
using the equation which describes the internal stability of 
a model: 

∑ (yi-yˆi) 2 
      q2 =1 -      -----------------------                                                               (2) 

∑ (yi-ymean) 2 
 
 

Where yi, and yˆi are the actual and predicted activity of the ith molecule in the training set, 
respectively, and ymean is the average activity of all molecules in the training set. 

 
Table.1 The substituted 2-butylbenzimidazoles derivatives for angiotensin II antagonists and their IC50 

values 
 

N

N
Bu

R2

R1

 
 

Comp. R1 R2     IC50
 (M)  -log IC 50 

13a  H  Tet 9.0 0.954243 
13b  5-OMe  Tet  9.1 0.959041 
13c  6-OMe  Tet  11 1.041393 
13d  5-C1  Tet  15 1.176091 
13e  6-C1  Tet  31 1.491362 
13f  7-OMe  Tet  28 1.447158 
14a  4-C02Me  Tet  72 1.857332 
14b  5-C02Me  Tet  7.4 0.869232 
14c  6-C02Me  Tet  4.4 0.643453 
14d  7-C02Me  Tet  3.2 0.50515 
14e  5-Me-7-C02Me  Tet  8.7 0.939519 
14f  5-Cl-7-C02Me  Tet  4.4 0.643453 
14g  6-Me-7-C02Et  Tet  9.1 0.959041 
14h  4-CONH2  Tet  130 2.113943 
141  7-C02Et  Tet  14 1.146128 
14j  7-C02Bu  Tet  12 1.079181 
15a  4-C02H  Tet  >100 2 
15b  5-C02H  Tet  55 1.740363 
15c  6-CO2H  Tet  90 1.954243 
15d  7-C02H  Tet  5.5 0.740363 
15e  5-Me-7-C02H  Tet  13 1.113943 
15f  5-Cl-7-C02H  Tet  11 1.041393 
15g  6-Me-7-C02H  Tet  3.4 0.531479 
16a  H  C02H  11 1.041393 
16b  7-C02H  C02H  6.6 0.819544 
17  7-C02H  1-Me-Tet 34 1.531479 
18  7-CONHi-Pr  Tet  5.4 0.732394 
27  7-CH2OH  Tet  4.5 0.653213 
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28  7-CH2OMe  Tet  6.0 0.778151 
29  7-CH2NMe2  Tet  24 1.380211 
30  7-Me  Tet  3.3 0.518514 
31  7-CH2COiiEt  Tet  2.5 0.39794 
32  7-OH  Tet  11 1.041393 
33  7-CH2C02H  Tet  26 1.39794 

          
Multiple Linear Regression Analysis  
The stepwise multiple regression analyses were carried out using the statistical software 

openstat2, version 6.5.1, designed and standardized by Bill Miller and Stat Val. Correlation matrix 
was obtained to justify the use of more than one variable in the study. The variables used were 
with maximum correlation to activity and minimum inter-correlation with each other. From the 
statistical viewpoint, the ratio of the number of samples (N) to the number of variables used (M) 
should not be very low; usually it is recommended that N/M≥5. 

 
 

Table 2. Selected physico-chemical parameters of 2-butylbenzimidazole. 
 

   H-
Donor 
Count 

XlogP slogp  H 
cou
. 

kappa3 T_
C_ 
N_
5 

T_N_
N_5 

T_O_ 
Cl_5 

T_N_
O_4 

T_C_
Cl_5 

T_2_
Cl_6 

T_
2_
O_
4 

T_
N_
O_
4 

T_C_
N_2 

1 6.348 5.2743  0 5.2394  17   0 
  

0 0  0 0 0 0 11 
2 6.221 5.0032 1 5.9568 19 0 0 0 0 0 2 0 11 
2 6.221 5.0032 1 5.9568 19 0 0 0 0 0 2 0 11 
1 6.967 5.9277 0 5.4820 17 0 0 0 1 0 0 0 11 
1 6.967 5.9277 0 5.4820 17 0 0 0 2 1 0 0 11 
2 6.221 5.0032 1 5.7969 18 0 0 1 0 0 2 1 11 
2 4.139 4.7276 2 6.0277 18 0 0 2 0 0 6 2 11 
2 4.139 4.7276 2 6.1895 19 0 0 0 0 0 4 0 11 
2 4.139 4.7276 2 6.1895 19 0 0 0 0 0 4 0 11 
2 4.139 4.7276 2 6.0277 18 0 0 2 0 0 4 2 11 
2 4.42 5.0360 2 6.2702 19 0 0 2 0 0 4 2 11 
2 4.758 5.381 2 6.2702 18 0 2 2 2 0 4 2 11 
2 4.42 5.0360 2 6.1124 19 0 0 2 0 0 4 2 11 
3 5.072 3.8995 2 5.7969 19 1 0 1 0 0 3 1 12 
2 4.589 5.1177 2 6.1124 19 0 0 2 0 0 4 2 11 
2 5.489 5.8979 2 6.9135 19 0 0 2 0 0 4 2 11 
2 5.92 4.9725 2 5.7969 17 0 0 2 0 0 6 2 11 
2 5.92 4.9725 2 5.9568 18 0 0 0 0 0 4 0 11 
2 5.92 4.9725 2 5.9568 18 0 0 0 0 0 4 0 11 
2 5.92 4.9725 2 5.7969 17 0 0 2 0 0 4 2 11 
2 6.201 5.2809 2 6.0277 18 0 0 2 0 0 4 2 11 
2 6.539 5.6259 2 6.0277 17 0 2 2 1 0 4 2 11 
2 6.201 5.2809 2 5.8721 18 0 0 2 0 0 4 2 11 
1 6.144 5.7924 2 5.2577 5 0 0 0 0 0 6 0 7 
1 7.01 6.8255 2 5.8142 7 0 0 0 0 0 6 0 7 
2 0 6.0107 2 5.7225 17 0 0 2 0 0 4 2 13 
3 7.818 6.1107 2 8.1432 22 1 0 1 0 0 2 1 13 
1 6.038 5.0868 1 5.5555 17 0 0 1 0 0 2 1 11 
1 4.912 5.7977 1 6.0277 19 0 0 1 0 0 2 1 11 
2 6.527 5.2319 1 6.3579 21 1 0 0 0 0 0 0 13 
1 6.629 5.5827 0 5.3265 17 0 0 0 0 0 0 0 11 
2 6.9 5.8525 2 6.5025 20 0 0 0 0 0 4 0 11 
2 5.974 4.9799 1 5.3265 17 0 0 1 0 0 3 1 11 
2 6.021 4.9014 2 6.3579 18 0 0 0 0 0 4 0 11 
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The QSAR equations were constructed for efficacy data of both species of malarial 

parasite with the physcio-chemical descriptors and indicator variables. The statistical quality of the 
equations[15] was judged by the parameters like correlation coefficient (r), explained variance (r2), 
standard error of estimate(s) and the variance ratio or overall significance value (F).The accepted 
equations are validated for stability  and predictive ability using “leave –one-out” and  cross 
validation technique. The statistical parameters used to access the quality of the models are the 
predictive sum of squares (PRESS) of validation. Finally, the standard cross-validation correlation 
coefficient r2 and q2 are also calculated. 
                                                PRESS = Σ (Ypred - Y obs)2  
                                               Spress    =√ PRESS/ (n-k-1)  
    n= no. of compounds used for cross-validation 
yi= experimental value of the physic-chemical property for the ith sample 
y= value predicted by the model built without the sample i 
 
 

Table 3. Observed, and predicted antihypertensive activity. 
 

Com.No Actual 
Activity 

Observed  
Activity 

Predict.1 Predict.2 Predict.3 Predict.4 

13a 9.0 0.954243 1.0532 1.1101 1.18719 1.03812 
13b 9.1 0.959041 0.94721 1.08213 1.151233 0.98321 
13c 11 1.041393 1.101504 1.15882 1.222731 1.14378 
13d 15 1.176091 1.182841 1.22126 1.196317 1.23717 
13e 31 1.491362 1.3922 1.4174 1.512571 1.47925 
13f 28 1.447158 1.471948 1.49528 1.390786 1.46315 
14a 72 1.857332 1.826863 1.92157 1.932962 1.80435 
14b 7.4 0.869232 0.964136 0.99934 1.059279 0.927331 
14c 4.4 0.643453 0.774013 0.726352 0.76321 0.71631 
14d 3.2 0.50515 0.605624 0.73877 0.728897 0.53812 
14e 8.7 0.939519 0.886349 0.9789 0.895442 0.96147 
14f 4.4 0.643453 0.908205 0.754828 0.714895 0.67352 
14g 9.1 0.959041 1.0123 1.016205 1.10525 1.02156 
14h 130 2.113943 2.144284 2.1472 2.06418 1.99562 
141 14 1.146128 0.99816 1.083347 1.0981 1.2138 
14j 12 1.079181 1.171158 1.15491 1.434366 1.12812 
15a >100 2 1.1995 2.11423 1.890381 2.13814 
15b 55 1.740363 1.670321 1.71104 1.809287 1.921074 
15c 90 1.954243 1.81162 1.863081 2.012542 1.892743 
15d 5.5 0.740363 0.79204 1.02137 0.770821 0.92814 
15e 13 1.113943 1.06932 0.924116 1.163231 1.249701 
15f 11 1.041393 1.169151 1.148119 1.13196 1.09381 
15g 3.4 0.531479 0.700019 0.68137 0.815886 0.497264 
16a 11 1.041393 0.967553 1.182836 1.12429 1.168932 
16b 6.6 0.819544 0.841858 0.741724 0.909735 0.936145 
17 34 1.531479 1.616548 1.468433 1.507579 1.612678 
18 5.4 0.732394 1.09627 0.81376 0.93355 0.81482 
27 4.5 0.653213 0.723771 0.976807 0.69405 0.746148 
28 6.0 0.778151 0.73353 0.885394 0.846768 0.7179 
29 24 1.380211 1.291442 1.41972 1.416597 1.447813 
30 3.3 0.518514 0.64276 0.57215 0.66381 0.59025 
31 2.5 0.39794 0.769545 0.41765 0.679956 0.552789 
32 11 1.041393 1.367292 1.134277 1.191203 1.10386 
33 26 1.39794 1.40951 1.34281 1.446217 1.371367 
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3. Results and discussion 
 
Rationalization of physicochemical characters for antihypertensive activity was performed 

with the help of 33 compounds of 2-butylbenzimidazoles derivatives analogs using regression 
analysis technique (partial least square analysis, multiple regressions, and principle component 
analysis) were applied to generate models. The sphere exclusion method was adopted for division 
of the training and test sets. 
 
 
Uni-Column Statistics: Training set 
 
Column Name              Average        Max            Min            StdDev         Sum             
IC_50                           5.9656         6.6021         5.0000         0.4037         149.1410        
 
Uni-Column Statistics: Test set 
 
Column Name              Average        Max            Min            StdDev         Sum             
IC_50                             5.6378         6.3565         4.8861         0.5032         50.7406     
 

The unicolumn statistical analysis can be interpreted to mean that the standard deviation of 
the training set is higher than that of the test set, indicating that there is a wide spread of activity in 
the training set with respect to the means compared with the test set. The mean and standard 
deviation for the training and test sets provide insight into the relative difference in the mean and 
point density distribution of the two sets. The minimum and maximum values in both the training 
and test sets are compared such that the maximum of the test set should be less than that of the 
training set. The minimum of the test set should be greater than that of the training set, suggesting 
the interpolative behavior of the test set (i.e., derived within the minimum–maximum range of the 
training set).  
Model 1 
Log10(IC_50) = + 0.4250 Hydrogen Count -0.1844 T_2_O_4 + 0.6073 T_N_O_4 +0.2364  - 
0.5364 T_C_N_2 + 1.2774 kappa3 + 7.0026                                               1 
 
Optimum Components = 2, Degrees of Freedom = 15, n = 25, r2= 0.7152, q2= 0.6753, F test = 
22.3215 r2 se = 0.4321, q2 se = 0.4690, pred_r2 = 0.6875, SEE = 0.112, SECV= 0.310, SEP=0.021, 
best_ran_r2 =   0.325, best_ran_q2   = 0.116, Zscore_ran_r2 =1.012, Zscore_ran_q2= 1.214,  
α_ran_r2 = <0.0001, α _ran_q2 = <0.001                 
Model 1 explains 71 % of the variance. The model shows an internal predictive (q2= 0.6753) of 
67% and a predictivity for the external test (pred_r2= 0.6875) of 69%. The overall statistical 
significance level was found to exceed 99.9%. In model 1, the influential descriptor kappa3, 
Hydrogen Count, T_C_N_2, T_N_O_4, T_2_O_4. The presence of a phenyl ring in the compound 
is favoured for activity. Thus, derivatives with an 5th position Benzimidazoles analogs tend to be 
more potent than the compact substituents in that position. Antihypertensive activity of substituted 
Benzimidazoles analogs inferred that 5th position of benzimidazoles is more susceptible compared 
with 4th, 6th, and  7th position for change in the activity and also suggested that substitution at 5 th 
position of benzimidazole, such as kappa3, was necessary for AII antagonistic activity, 
unsubstantiated 4th, 5th, and 6th were better than any substitution at this position. The contribution 
of groups also helps in understanding the binding of AII antagonist with AT1 receptor by means of 
possible hydrogen bond interaction in between T_C_N_2 of benzimidazole. 
 
           Model.1 
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Model.2 
Log10(IC_50) = + 0.3838 slogp + 0.8714  T_2_Cl_6 + 0.6073 chi3Cluster 
+0.2364 +0.394 T_N_N_5 -  0.3801 T_C_N_5 
 Optimum Components = 2, Degrees of Freedom = 15, n = 25, r2= 0.8152, q2= 0.7016, F test = 
31.321,  r2 se = 0.3351, q2 se = 0.3690, pred_r2 = 0.7295, SEE = 0.120, SECV= 0.211, SEP=0.190, 
best_ran_r2 =   0.165, best_ran_q2   = 0.216, Zscore_ran_r2 =0.231, Zscore_ran_q2= 0.102,  
α_ran_r2 = <0.0001, α _ran_q2 = <0.001 
 
Model 2 generated using the multiple regression analysis method with 0.8152 as the 
coefficient of determination (r2) was considered using the same molecules in the test 
and training sets. The model can explain 76.9 % of the variance in the observed activity values. 
The model shows an internal predictive power (q2= 0.7016) of 70% and predictivity for the 
external test set (pred_r2 = 0.7295) of about 72 %. The F test value of 31.321 shows the overall 
statistical significance level for 99.99% of the model. Model 2 also shows a positive correlation 
with slogp, T_2_Cl_6, T_N_N_5, and a negative correlation with T_C_N_5. 
 
Model.2 

y = 0.8977x + 0.1763
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Log10 (IC_50) = + 0.7838 H-Donor Count + 0.8714 T_2_Cl_6 + 0.6073  
chi5chain+0.2364 +0.394 T_N_N_5 -  0.3801 T_2_O_4 + 4.2238 
 
Optimum Components = 2, Degrees of Freedom = 12, n = 25, r2= 0.7452, q2= 0.6273, F test 
27.321 r2 se = 0.4251, q2 se = 0.3381, pred_r2 = 0.7019, SEE = 0.191, SECV= 0.377, SEP=0.319, 
best_ran_r2 =   0.212, best_ran_q2   = 0.431, Zscore_ran_r2 =0.431 
Zscore_ran_q2= 0.279,  α_ran_r2 = <0.00001, α _ran_q2 = <0.01 
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Model 3 generated using PLS regression analysis method with 0.7421 as the Coefficient of 
determination (r2) was considered using the same molecules in the test and training sets. The 
model can explain 70 % of the variance in the observed activity values. The model shows an 
internal predictive power (q2= 0.6273) of 60% and predictivity for the external test set (pred_r2 = 
0.7019) of about 70 %. The F test value of 27.321 shows the overall statistical significance level 
for 99.99% of the model. Model 3 also shows a positive correlation with H-Donor Count, 
T_2_Cl_6, T_N_N_5, chi5chain and a negative correlation with T_2_O_4 and constant. 
Model.3 
 
 
 
 
 
 
 
 
Model.3   
 

y = 0.8625x + 0.2454
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Model.4 
Log10 (IC_50) = + 1.2462 chi3Cluster + 0.4815 T_2_Cl_6 + 0.4313 XlogP +0.5186 T_N_N_5 - 
0.4412 slogp + 1.221  
 
Optimum Components =3, Degrees of Freedom = 17, n = 25, r2= 0.8425, q2= 0.7151, F test 
47.312 r2 se = 0.4511, q2 se = 0.2511, pred_r2 = 0.8271, SEE = 0.191, SECV= 0.42576    , 
SEP=0.01027    , best_ran_r2 =   0.524, best_ran_q2   = 0.621, Zscore_ran_r2 =0.662, 
Zscore_ran_q2= 0.421,  α_ran_r2 = <0.00001, α _ran_q2 = <0.01 
 
Model 4 generated using PLS regression analysis method with 0.8425as the Coefficient of 
determination (r2) was considered using the same molecules in the test and training sets. The 
model can explain 84 % of the variance in the observed activity values. The model shows an 
internal predictive power (q2= 0.7151) of 72 % and predictivity for the external test set (pred_r2 = 
0.8271) of about 82.71 %. The F test value of 47.312 shows the overall statistical significance 
level for 99.99% of the model.  

 
Table: Correlation matrix of model-4 
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Parameters chi3Cluster T_2_Cl_6 XlogP T_N_N_5 slogp 
chi3Cluster 1.0000     
T_2_Cl_6 0.22164 1.0000    

XlogP 0.6517 0.729153 1.0000   
T_N_N_5 0.4403 0.422649 0.306134 1.0000 

 
 

 
slogp 0.3751 0.1632 0.42854 0.4358 1.000000 

 
                                        

Docking Studies 
The structure of the ligand was prepared in MOL2 format using the 2D sketcher module of 

V-Life MDS 3.5 and MMFF 94 charges were assigned to the ligand atoms. The ligand was 
subjected to minimization until converged to a maximum derivative of 0.001 kcal_A ˚ A docking 
study was carried out in order to explain the experimentally observed low AT1 affinity. For this 
purpose a previously developed model of the AT1 receptor was used.16 For the definition of the 
active site, several site-directed mutagenesis studies have been performed in order to examine the 
residues involved either in ligand binding (agonists or antagonists) or in signal transduction.[17-
27] these studies are some times controversial and do not establish unequivocally the active site of 
the AT1 receptor [17,19,23,24,27] Other similar studies [28-31] a binding profile was proposed in 
the previous report where n-butyl chain interacts with L1 lined by Phe182, Phe171, Ala163 and 
Ser103 and the biphenyl system interacts with L2 lined by Val108 through Van der Waal 
interactions while N-3 of benzimidazole nucleus and terminal carboxyl group interact through H-
bonding with Tyr113 and Tyr184 H-bonding interactions The key amino acids for binding of 
nonpeptide AT1 antagonists are Val108,Ser 109, Asn111,Leu 112,Tyr 113, Ala163, Arg167,Ala 
181, His 183,Lys199, Ser252, Trp 253,His256,and  Asn295,. These amino acids have been 
reported for specific interactions with non-peptide antagonists of the class of SARTANs. Other 
amino acids mostly in the third and seventh helices are important for the maintenance of the 
integrity of the pocket. These reported amino acids cover a wide area of the receptor thus cannot 
determine a unique binding pocket. The pocket selected for further docking studies was the one 
which included three of the most important amino acids (Val108, Lys199, Trp 253 and His256) for 
antagonist binding. This pocket is located near the polar head groups and exceeds down to the 
hydrophobic core of the phospholipid bilayers of the membrane in which the receptor is 
embedded. Thus the specific pocket may be easily accessible by the ligands after their diffusion 
which confirms the proposed two-step mechanism of action for AT1 antagonists. All the others 
residues were comprised in a limited region compatible for the interaction with ligand 
.Furthermore aligning the AT1 receptor model with the bovine rhodopsin crystal structure came 
out that the residues listed above (principally Valine (108), Lys (199), and Leu (265)) delimited a 
region that corresponded to the binding site of retinal. The best docked structure of 14F minimum 
energy (-21.382) ligand highlighted an interaction of the methyl,carboxyl,chlorine  substituent 
with Lys (199), while Valine (108) interacted with the biphenyl system, and Ala 181 with the n-
butyl substituent; Leu (265) to interact with the ligand. As regards the role of the tetrazole ring in 
AT1 receptor binding, all the recent models suggest an ionic interaction with Lys (199), The 
results obtained from the V-Life MDS 3.59 Biopredicta Tools docking studies showed that the 
binding disposition of the ligand was similar to that of losartan with the biphenyl ring located in 
the lipophilic pocket delimited by Valine (108), Valine 179, Trp (253), His (256),Ile(288), 2-butyl 
substituent interacting in the secondary lipophilic pocket created by Ser (109), Leu (112), Tyr 
(113), Asn (168). However as shown in (Figure3,4,5,6) with respect Ligand 14F was interaction 
with Hydrogen Bond, Hydrophobic interaction, PI Stacking interaction, vdW interaction. 
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Fig: 3 ligand – receptor Interaction  Hydrophobic Interactions 
 

 
 

Fig 4:    ligand – receptor Interaction Vdw Interaction 
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Fig: 5 Hydrogen Bond, Vdw interaction, Hydrophobic, ligand – receptor Interaction 
 
 

 
 

Fig: 6   PI Staking ligand – receptor Interaction 
 

 
4. Conclusions  
 
 
The 2D QSAR studies were conducted with a series of angiotensin II antagonists, and 

some useful molecular models were obtained. The physicochemical and Alignment-independent 
descriptors were found to have an important role in governing the change in activity. Hence, these 
models are very useful for further optimization of antihypertensive activities. The current study 
provides better insight into the designing of more potent antihypertensive agents in the future 
before their synthesis. All the n-butyl chains carboxylate, phenyl and tetrazole ring substituents 
were treated as fully ionized groups. For each ligand, the best docked structure was chosen, and 
this receptor-based alignment was used for further studies. The docking of best molecule   into the 
AT1 receptor confirmed that Tyr 113, ser 109, Lys (199), val (108), and Asn (168), His 256, Trp 
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253 interacted with the receptor. this study illustrates a new hypothesis about the binding 
interaction of non-peptide antagonists inside the AT1 receptor, encouraging further investigations 
on new residues that might be fundamental for the ligand-receptor interaction. Furthermore, 
because AT1 antagonists are an interesting therapeutic target. 
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