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The Harary index, H = H(G), of a molecular graph G is based on the concept of 
reciprocal distance and is defined, in parallel to the Wiener index, as the half-sum of 
the off-diagonal elements of the molecular distance matrix of G. In this paper we 
compute the Harary index of zigzag polyhex nanotorus. 
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           1. Introduction 
 

One of considerable topics in chemistry is surveying the quantitative structure-property 
relationship between the structure of a molecule and chemical, physical and biological properties 
of it(QSPR). For this purpose, the form of molecule must be coded according to numbers. A 
common method, for coding the molecule structure, is to assign a graph to the molecule, where 
the vertices are atoms of molecule and edges are chemical bonds between the atoms. According 
to this graph, we can assign various numeral values (topological indices), polynomials, matrices 
and extra to the molecules which are usually invariant under automorphism of graphs (See [1-3]). 
A novel topological index for the characterization of chemical graphs, derived from the reciprocal 
distance matrix and named the Harary index in honor of Professor Frank Harary,  has 
independently been defined by Plavšić et al. [4] and Ivanciuc et al. [5] in 1993. The Harary index 
and the related indices have shown a modest success in structure-property correlations,[3-8] but 
the use of these indices in combination with other descriptors appears to be very efficacious in 
improving the QSPR models[8]. For nanotubes and nanotorus, the big size of corresponding 
graphs makes the calculations complicated. Diudea [9-13] was the first chemist which considered 
the problem of computing topological indices of nanostructures. Various topological indices have 
been calculated for these molecules up to this time [13-22]. In this paper, we represent a 
calculation for Harary index of G=H [p,q], an zigzag polyhex nanotorus. 6C
 

2. Main results and discussion 
 
Let G be a concerned simple graph (i.e. G has no loops, multiple or directed edges) with 

set of vertices . The distance matrix  of G is a square matrix of order n, 
whose entry is the distance, the number of edges of a shortest path, between the vertices 

and in G. In 1947 chemist Harold Wiener [23] developed the most widely known 
topological descriptor, the Wiener index, and used in to determine physical properties of types of 
alkanes known as paraffins. The Wiener index of G, is equal to the sum of distances 
between all pairs of vertexes of G. By the above notations: 
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Harary index, a parallel of Wiener index, is reasonably well-correlated with many 

physical and chemical properties of organic compounds, and chemists are hence interested in 
computing it for a variety of classes of graphs. This index,  is defined the half of the 
summation of the inverse of the distances of the vertices of the graph G according to the 
expression: 
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Throughout this paper G=H [p,q], (see Figure 1), denotes an arbitrary zigzag polyhex 

nanotorus in terms of the circumference p and the length q. The aim of our work is finding an 
exact expression for the Harary index of the zigzag polyhex nanotorus. For this purpose we 
choose a coordinate label for vertices of G as shown in Figure 2. Note that G has pq vertices.  

6C

 

 
Fig. 1. HC6[20,40]:  Side view; Top view 

 

 
 

Fig. 2. A zigzag polyhex nanotorus lattice with p=16 and q=6. 
 
 

Let p=2c and q=2d. We begin our work with the following lemma about G.  
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Theorem 1. Let  is a white vertex on level 0. Then the sum of the inverses of the 
distances between u and all vertices on level k, level 0≤k<d, is denoted by  is  
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Also if u be a black vertex on level 0 then the sum of the inverses of the distances between u and 
all vertices on level k, 0≤k<d, is denoted by  is  kb
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Proof: We compute . Since G is symmetric, it is suffices we consider . At first note that the 
lattice is symmetric (with respect to the line joining  to ). We distinguish three cases: 

kb 01x
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Case 1: d>k ≥c and k is even. In this case for all 1 ≤ j ≤ c + 1, we have 
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Case 2: d>k ≥c and k is even. In this case for all 1 ≤ j ≤ c + 1, we have 
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Case 3: k<c. Then . For all j's, such that  ckxxd kc +=),( 01 jc ≤+1  and , we have jk <+1
1),( 01 −+= jkxxd kj . 

Thus the sum of the inverse of the distances between  and  (for all j's, such that c+1≤j and 
k+1<j) and their symmetric vertices is   
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Therefore the product of the distances between  and  (for all j such that1≤j≤k+1) and their 
symmetric vertices is 
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Result 1.  The inverse of the distances of one white or black vertex of level 0 to all vertices on 
level  d is 
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Proof: Since G is symmetric (with respect to the line joining  to ), it is sufficient to prove 
the assertion for  and . For , the proof is exactly the proof of Result 1.  We consider the 
tori that can be built up from two halves collapsing at level 0. In the top part  is such as a black 
vertex so by the proof of Result 1, we can calculate . 
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Result  2. For each )(GVu∈  we have 
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Proof:  At first note that the lattice is symmetric (with respect to the level k). So it is suffices to 
consider  and . For other black (white) vertices the argument is similar. Now we begin 
with . Let B  and

01x 02x
{k=01x }0|1 dk ≤≤ }1|{2 −≤<= qkdkB . Then we have 

∑∑∑
∈∈≠∈≠

+=
210101

),(
1

),(
1

),(
1

0101)( 01 BvBvxGVvx vxdvxdvxd
 

But 

.                

),(
1

),(
1

),(
1

),(
1

1

d 011 010 0101 01101

do

levelvlevelvlevelvxBvx

bbb

vxdvxdvxdvxd

+++=

+++= ∑∑∑∑
∈∈∈≠∈≠

L

L

 

For computing the last sum we consider the tori that can be built up from two halves collapsing at 
level 0. The top part is formed of the lines of  that  are such as a black vertex. So by a 
changing index and using the proof of the Theorem 1, we obtain that 
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This completes the proof. 
 
Since H [p,q]  has pq vertices then by result 2 we have  6C
Theorem 2. The Harary index of  G=H [p,q] is given by 6C
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We recall that γ is Euler-Mascheroni constant and has the numerical value 0.577215665. Also 
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The expansion of (1) leads us to   
 
Corollary  Let p=2c and q=2d.  
If p>q then                       
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3. Exprimental 
 
In Table 1 and 2 by using the corollary we obtain Harary index for some p and q. 
 

Table 1 (Haray index q<p) 
 

p 
4 
6 
6 
8 
100 
100 
100 
100 
100 

q 
2 
2 
4 
2 
10 
14 
20 
40 
50 

H(p,q) 
19.33333333 
37.50000000 
121.4000000 
58.26666667 
30786.21784 
54569.42075 
98864.91179 
301078.1339 
425296.0531 

p 
80 
80 
80 
10 
10 
10 
12 
12 
14 

q 
40 
50 
60 
4 
6 
8 
10 
8 
6 

H(p,q) 
217256.3782 
304789.1989 
399637.3809 
269.1904762 
514.8928571 
799.0634921 
1489.168831 
1064.704762 
858.8666667
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Table 2 (Harary index q≥p) 
 

 p 
2 
2 
4 
6 
20 
22 
100 
100 
100 

q 
4 
6 
8 
8 
40 
40 
200 
400 
500 

H(p,q) 
15.66666667 
28.40000000 
167.2761905 
343.1714286 
24006.76951 
28197.54348 
3064297.789 
7514893.08 
9951475.66 

p 
6 
8 
10 
10 
8 
200 
400 
600 
1000

q 
12 
12 
12 
14 
14 
2000 
2000 
2000 
2000

H(p,q) 
602.4935065 
991.2900433 
1442.307359 
1790.704740 
1225.633256 
187253760.6 
638715743.8 
1291594754. 
3077940141. 
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