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HARARY INDEX OF ZIGZAG POLYHEX NANOTORUS
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The Harary index, H = H(G), of a molecular graph G is based on the concept of
reciprocal distance and is defined, in parallel to the Wiener index, as the half-sum of
the off-diagonal elements of the molecular distance matrix of G. In this paper we
compute the Harary index of zigzag polyhex nanotorus.
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1. Introduction

One of considerable topics in chemistry is surveying the quantitative structure-property
relationship between the structure of a molecule and chemical, physical and biological properties
of it(QSPR). For this purpose, the form of molecule must be coded according to numbers. A
common method, for coding the molecule structure, is to assign a graph to the molecule, where
the vertices are atoms of molecule and edges are chemical bonds between the atoms. According
to this graph, we can assign various numeral values (topological indices), polynomials, matrices
and extra to the molecules which are usually invariant under automorphism of graphs (See [1-3]).
A novel topological index for the characterization of chemical graphs, derived from the reciprocal
distance matrix and named the Harary index in honor of Professor Frank Harary, has
independently been defined by Plavsic et al. [4] and Ivanciuc et al. [5] in 1993. The Harary index
and the related indices have shown a modest success in structure-property correlations,[3-8] but
the use of these indices in combination with other descriptors appears to be very efficacious in
improving the QSPR models[8]. For nanotubes and nanotorus, the big size of corresponding
graphs makes the calculations complicated. Diudea [9-13] was the first chemist which considered
the problem of computing topological indices of nanostructures. Various topological indices have
been calculated for these molecules up to this time [13-22]. In this paper, we represent a

calculation for Harary index of G=H C [p,q], an zigzag polyhex nanotorus.

2. Main results and discussion

Let G be a concerned simple graph (i.e. G has no loops, multiple or directed edges) with
set of vertices V' (G) = {v,,...,v, } . The distance matrix D(G) of G is a square matrix of order n,

whose entry dij. is the distance, the number of edges of a shortest path, between the vertices
v;and v;in G. In 1947 chemist Harold Wiener [23] developed the most widely known

topological descriptor, the Wiener index, and used in to determine physical properties of types of
alkanes known as paraffins. The Wiener index of G, W(G)is equal to the sum of distances

between all pairs of vertexes of G. By the above notations:
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wG)=>d,.

i<j

Harary index, a parallel of Wiener index, is reasonably well-correlated with many
physical and chemical properties of organic compounds, and chemists are hence interested in
computing it for a variety of classes of graphs. This index, H(G) is defined the half of the
summation of the inverse of the distances of the vertices of the graph G according to the
expression:

H(G) = Z#

i<j

Throughout this paper G=H C [p.q], (see Figure 1), denotes an arbitrary zigzag polyhex

nanotorus in terms of the circumference p and the length q. The aim of our work is finding an
exact expression for the Harary index of the zigzag polyhex nanotorus. For this purpose we
choose a coordinate label for vertices of G as shown in Figure 2. Note that G has pq vertices.

Fig. 2. A zigzag polyhex nanotorus lattice with p=16 and q=6.

Let p=2c and q=2d. We begin our work with the following lemma about G.
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Theorem 1. Let u € V(G) is a white vertex on level 0. Then the sum of the inverses of the

distances between u and all vertices on level k, level 0<k<d, is denoted by w, 1is

I: k=0 W, =2 .L-i-l;
=1 ¢
II: k<c wk:ZZ 1‘ +k+1+ k ;
Snk+j-1 2k 2k+1
II: &>k> w, =c¢ ! +CL.
2k+1 2k

Also if u be a black vertex on level 0 then the sum of the inverses of the distances between u and
all vertices on level k, 0<k<d, is denoted by b, is

o1
I: k=0 by =2 ——+
25
II: k <c bk:2z 1‘ +k+1+ k ;
j=k+2k+]_1 2k 2k_1
1
+c—.
2k-1 2k

Proof: We compute b, . Since G is symmetric, it is suffices we consider x,, . At first note that the

1
C’

II: &>k > b, =c

lattice is symmetric (with respect to the line joining x,, tox,,). We distinguish three cases:
Case 1: d>k >c and k is even. In this case for all 1 <j<c+ 1, we have
2k—1 if j is even
d (x;, ,x,g) = e .
2k if j is odd.
Now by considering these vertices and their symmetric vertices we obtain ¢ vertices having
distance 2k-1 from x,, , and ¢ vertices having 2k distance from x,, . Therefore

1
b, =c +c—.
2k-1 2k
Case 2: d>k >c and k is even. In this case for all 1 <j <c + 1, we have
2k if j iseven
d(Xo1, X)) = e
2k—-1 if j isodd.

Now by considering these vertices and their symmetric vertices we obtain ¢ vertices having
distance 2k-1 from x,, , and c vertices having 2k distance from x,, . Therefore

1
b =c——+c—.
2k-1 2k
Case 3: k<c. Then d(x,,,x, ) =k +c.Forallj's,suchthat c+1< j and k+1< j, we have
d(xy,x;)=k+j-1.
Thus the sum of the inverse of the distances between x,, and x,; (for all j's, such that c+1<j and

k+1<j) and their symmetric vertices is

S, =2 1, + ! .
j=k+2k+J_1 k+C

<. 1
Hence if k=0 then b, = 22—1 +—. Also if 1<j<k+1, then
j=2J = ¢
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2k if k—j isodd
d(x017xlg') = . ..

2k -1 if k—j iseven.
Therefore the product of the distances between x,,; and x;; (for all j such thatl<j<k+1) and their
symmetric vertices is

1 1
S,=tk+)—+k——.
=D S
So
- 1 k+1 k
b, =8+S,=2 —+ + .

/=k+2k+‘]_l 2k 2k_1
Result 1. The inverse of the distances of one white or black vertex of level 0 to all vertices on
level dis

xelevel d d('x01 b} X)

2 Lodxl 4 gee
T Ahd -1 2d  2d4-1

c < ifd>c.
2d -1 2d

Proof: Since G is symmetric (with respect to the line joining x,, tox,,), it is sufficient to prove
the assertion for x,, andx,. Forx,,, the proof is exactly the proof of Result 1. We consider the
tori that can be built up from two halves collapsing at level 0. In the top partx, is such as a black

vertex so by the proof of Result 1, we can calculate b, .

Result 2. For each u € V(G) we have

1
> =b, +b +..b, W W, .
uzvel (G) d(u,v)
Proof: At first note that the lattice is symmetric (with respect to the level k). So it is suffices to

consider x,, andx,,. For other black (white) vertices the argument is similar. Now we begin
withx,,.Let B, ={k|0<k <d} andB, = {k|d <k < gq—1}. Then we have

1 1 1
L, dGom G

Xo12veV (G) d(xm ’ V) X1 #VveB) veB,

1 1 1 1
D I

X1 #VEB, d(xm s V) Xo1 #velevel 0 d(xm s V) velevel 1 d(x01 s V) velevel d

But

=b,+b +---+b,.
For computing the last sum we consider the tori that can be built up from two halves collapsing at
level 0. The top part is formed of the lines of B, that x,, are such as a black vertex. So by a
changing index and using the proof of the Theorem 1, we obtain that

1 1 1 1
2 dGa) " o A e T L

veB, Xo1 #velevel q-1 velevel q-2 velevel d+1 d(xm ’V)

=W W, et W, .
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This completes the proof.

Since HC [p,q] has pq vertices then by result 2 we have
Theorem 2. The Harary index of G=HC| [p,q] is given by

H(G):%(bo+bl+...bd+wl+---+wd,l). (1)

Lety =limit, (Z:1 —In(n)),¥(x) = l;(x)) and I'(x) = J-I'He*tdt be the Gamma function.
i X °

i=1

We recall that y is Euler-Mascheroni constant and has the numerical value 0.577215665. Also
1

Y ——y=¥n+l).

i=1 !

The expansion of (1) leads us to

Corollary Let p=2c and g=2d.

If p>q then
2— —_— —_—
He,d) = 20d {(-4d + 2)Ln(2) + y —[2d%(d) - W(d + ]+ S F8d” =5d Z1 =3¢
2 2(c+d)
. 1 2d* +c’
+2> ¥ (c+k) -V Ek+)]}—— )
;[ (C ) ( 2)]} c—|—d

If p<q then
H(c,d)=2cd{Ln(2)(-4c-6)+y-c¥(c+ %) -c¥(d)-2¥(c)+3c¥(c)-c¥(d+ %) -Y(c+ %) +

c-1 1
4c-3+2) [2W(k +c)- P(k +5)]} +¢?-2d.
k=1
3. Exprimental
In Table 1 and 2 by using the corollary we obtain Harary index for some p and q.

Table | (Haray index q<p)

q | Hp.9 p |q | Hp.9

2 119.33333333 [ 80 |40 | 217256.3782
2

4

37.50000000 | 80 | 50 | 304789.1989
121.4000000 | 80 | 60 | 399637.3809
2 ] 5826666667 | 10 |4 | 269.1904762
100 | 10 | 30786.21784 | 10 | 6 | 514.8928571
100 | 14 | 54569.42075 | 10 | 8 | 799.0634921
100 | 20 | 98864.91179 | 12 | 10 | 1489.168831
100 | 40 | 301078.1339 |12 |8 | 1064.704762
100 | 50 | 425296.0531 |14 | 6 | 858.8666667

o ANN T
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Table 2 (Harary index q>p)

p |a |Hp p q H(p,q)

2 |4 | 15.66666667 |6 12 | 602.4935065
2 |6 |28.40000000 |8 12| 991.2900433
4 |8 |167.2761905 |10 |12 | 1442307359
6 |8 |343.1714286 |10 |14 | 1790.704740

20 | 40 | 24006.76951 |8 14 1225.633256
22 | 40 | 28197.54348 | 200 | 2000 | 187253760.6
100 | 200 | 3064297.789 | 400 | 2000 | 638715743.8
100 | 400 | 7514893.08 600 | 2000 | 1291594754.
100 | 500 | 9951475.66 1000 | 2000 | 3077940141.
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