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Monodispersed 4.1 nm FePt nanoparticles with narrow size distribution were successfully 
synthesized by the chemical polyol process with co-reduction of Fe(acac)3 and Pt(acac)2 in 
the presence of 1,2 hexadecanediol as a reducing agent and oleic acid and oleyl amine as a 
surfactant. To achieve L10 ordered structure, annealing at high temperature is required to 
realize phase transformation from face center cubic (fcc) to face center tetragonal (fct) 
phase. In this situation, FePt nanoparticles joining together and their size become larger 
than 20 nm.  This is due to thermal decomposition of organic surfactant (oleic acid and 
oley amnie) at temperature around of 350 oC. In the present work, we could to prevent 
sintering of FePt nanoparticles during the annealing process at temperatures of 650 and 
750 oC by using the core/shell structure. In this case, MnO nanoparticles were used 
successfully as the shell around of each FePt core particles to protect them from sintering. 
As results, coercivity, Hc, of FePt and FePt/MnO nanoparticles after annealing at 650 oC is 
equal with 5 kOe and 2 kOe, respectively. With increasing annealing temperature to               
750 oC, the coercivity of these nanoparticle increases dramatically as value of 10 kOe and 
5 kOe, respectively. 
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1. Introduction 
 
The L10 phase of FePt nanoparticles has high uniaxial magnetocrystalline anisotropy 

(Ku=6.6 ×107 erg/cm3), saturation magnetization of about 1140 emu/cm3 and high energy 
products,(BH) max, around of 13 MGOe [1-3], making it an excellent candidate in many 
applications, such as: (i) ultra-high magnetic recording media, (ii) high performance permanent 
magnets, (iii) sensors and drug carriers in biomedical [4-8].  

To achieve ultra-high density magnetic recording media, it is limited to the single domain 
regime. So that the small particle sizes (bits) due to their single domain regimes can be leaded to 
increasing areal density. The minimum critical size for single domain FePt nanoparticles with L10 
phase, which has thermal stability, is about 2.8 nm [9]. When the size of nanoparticles is less than 
a minimum critical size, magnetization of the particles becomes unstable and superparamagnetic 
behavior appears at room temperature, which is unsuitable for magnetic recording media 
applications. In the much literatures, FePt nanoparticles have been made successfully using 
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different chemically methods such as solution phase method [10], direct synthesis [11], and sol-gel 
[12]. 

The as-synthesized FePt nanoparticles by these methods have the chemically disordered 
face-centered cubic (fcc) structure, where the Fe and Pt atoms are distributed randomly in the 
crystal lattice and have superparamagnetic behavior at room temperature [13-15]. Annealing at the 
high temperatures (up to 550 oC) is required for phase transformation of FePt nanoparticles from 
chemically disordered fcc structure to the chemically ordered fct structure with high uniaxial 
magnetocrystalline anisotropy.  By the annealing process, organic surfactant (oleic acid and oleyl 
amine) start to decompose at a temperature above 350 oC and due to that sintering of particles take 
place and particles size become larger than before. In order to prevent sintering of FePt 
nanoparticles different methods have been suggested. One of these methods is lowering the 
ordering temperature using the additive metal such as Ag [16], and Au [17]. Li et al [18], have 
shown that in his work, the salt method (NaCl) able to prevent sintering of nanoparticles. Also 
Yano et al [19], shown that rapid thermal annealing can be effective to prevent sintering of 
nanoparticles.  

Core/shell structure is an interesting approach to prevent coalescence of magnetic 
nanoparticles where the magnetic cores were coated with Non-magnetic oxide shells, SiO2

 [20], 
and MgO [21] or magnetic shell Fe3O4

 [22] and CoFe2O4 [23]. In the previous work, we were used 
the magnetic shell particles as CoFe2O4 to prevent coalescence of Fe100-xPtx particle. After 
annealing our results demonstrate that CoFe2O4 shell have impressive role to protect core particles 
from sintering, but the result is a low coercivity [24]. 

In the present work monodisperse FePt nanoparticles have been successfully synthesized 
by a polyol process in the presence of 1,2hexadecandiol and oleic acid and oleyl amines [25-29]. 
Then a shell of MnO nanoparticles around of FePt core particles have been created and annealing 
at temperature of 650 and 750 oC for 2h under reducing atmosphere performed to phase transition 
take place from chemically disordered A1 to chemically ordered L10 phase. It seems that, MnO 
nanoparticles with a high melting temperature of 1650 oC are able to protect FePt nanoparticles 
during the annealing process. Also MnO nanoparticles with Neel temperature of 122 oK [30], have 
non-magnetic behavior at room temperature and do not have any interaction with the magnetic 
core particles. Results demonstrate that crystal structure and magnetic properties such as 
magnetization and coercivity can be changed by modification of annealing process.  

 
 
2. Experimental 
 
2.1. Synthesis of FePt core nanoparticles 
 
Monodisperse FePt nanoparticles were synthesized by the co-reduction of Fe(acac)3 (0.5 -

mmol), Pt(acac)2 (0.25 mmol), 1,2-hexadecanediol (2.5 mmol) in the presence of oleic acid (5 
mmol), oleylamine (5 mmol) and 10 mL of benzyl ether under a flow of N2 atmosphere. Mixing 
was performed for 20 min in order all powder completely dissolved and then reduction of Fe and 
Pt atoms in the presence of 1,2 hexadecanediol  have been obtained and the nucleation of FePt 
starts to begin. Afterward, the mixture was heated to the boiling point of benzyl ether (300 oC) 
with heating rate of 5 oC in the presence of reflux and kept at this temperature for 15 min before 
cooling down to room temperature under a flow of N2 atmosphere by removing the heat source.  

Purification process of the black product was executed as following: 40 ml ethanol was 
added to the mixture and the black product was precipitated and separated via centrifugation (8000 
rpm, 10 min). The ethanol impurities separated and black discarded was dispersed in hexane in the 
presence of oleic acid and oleyl amine. Centrifugation (8000 rpm, 10 min) was achieved again to 
remove any undispersed residue.   Finally, the synthesized 4.1 nm FePt core are used as the seeds 
to produce FePt/MnO core/shell nanoparticles, which MnO shell nanoparticles were already 
synthesized by another polyol process. 
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Fig. 3. (a) and (b) are XRD patterns of as-synthesized FePt and FePt/MnO nanoparticles, 

respectively. 
 

Figure 4 shows the XRD pattern of annealed FePt and FePt/MnO core/shell nanoparticles. 
Figure 4a and 4c associated to the FePt nanoparticles which are annealed at 650 and 750 oC, 
respectively and Figure 4b and 4d related to FePt/MnO nanoparticles at the same temperature, 
respectively. Annealing at 650 oC for 2 h under a reducing atmosphere (%93Ar + %7 H2) leads to 
transformation for disordered FePt nanoparticles occurred to chemically ordered L10 phase (Figure 
4a).  
 

 
Fig. 4. (a) and (b) are XRD pattern of annealed FePt and FePt/MnO nanopartices at 

temperature of 650 oC. 
 

 Characteristic (001) peak at 24.06o definitely belonging to the L10 structure of FePt and 
the other peaks for L10 phase of fct structure are: (110) at 2θ=33.30o, (111) at 41.47o, (200) at 
47.87o, (002) at 49.02o and (220) at 69.78o and (202) at 70.74o. In the case of FePt/MnO 
nanoparticles, annealing at 650 oC for 2 h leads to partial ordering in L10 phase, which is clear 
from the XRD patterns (Figure 4b). There is quite differences between two structure of FePt and 
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be increased. So considering that the average size of core nanoparticles in the FePt structure after 
annealing at both temperatures (650 and 750 oC) is larger than the average size of same core 
nanoparticles in the FePt/MnO core/shell structure, hence it can be concluded that the coercivity of 
FePt nanoparticles is higher than the coercivity of FePt/MnO nanoparticles. 

 
 

4. Conclusion 
 
The as-synthesized FePt nanoparticles have chemically disordered fcc structure and are 

superparamagnetic at room temperature due to their low magnetic anisotropy. Annealing at the 
temperature above 550 oC leads to transformation of disordered A1 phase occurred to the ordered 
L10 phase. During annealing process, the organic surfactant (oleic acid and oleyl amine) around 
each particle start to decompose and sintering of the nanoparticles occurs and large agglomeration 
is formed. We in this work at the first step attempt to synthesized monodisperse 4.1 nm FePt 
nanoparticle by chemical polyol process and at the next step we try to prevent sintering of FePt 
nanoparticles under annealing process by adding of MnO oxide shell around of each core particles. 
It observed the MnO shell particles are able to protect FePt nanoparticles from sintering at 
annealing temperature of 750 oC. As the result, coercivity for FePt nanoparticles with L10 phase is 
about 10 kOe, while it's about 5 kOe for FePt/MnO nanoparticle with L10 phase. 
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