EFFECT OF SINTERING TEMPERATURE ON V₂O₅ DOPED ZnO-Bi₂O₃-Sb₂O₃-MnO₂ BASED VARISTOR CERAMICS: MICROSTRUCTURE AND ELECTRICAL PROPERTIES

D. UMARU^a, A. ZAKARIA^{b*}, C. A. C. ABDULLAH^c, I. I. LAKIN^d, Y. ABDOLLAHI^e

^aDepartment of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

^bDepartment of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

^cSynthesis and characterization laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

^dDepartment of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

^eDepartment of Electrical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia

In this study the effect of the sintering temperature (1200–1300 °C) on V₂O₅ doped ZnO– Bi₂O₃-Sb₂O₃-MnO₂ (ZBSM) based varistor ceramics from 0 to 0.4 mol% was investigated for electrical and microstructural properties. The materials was processed using a conventional solid-state method and the finished samples were characterized using XRD, SEM and EDX techniques. The measured leakage current density was 1×10^{-4} mA/cm² when the barrier height was 1.38 eV, which gave the highest nonlinear coefficient around 12.18 at 0.20 mol%. The analyses related to those quoted in the literatures confirmed the presence of Zn₇Sb₂O₁₂, MnVO₄, BiVO₄ and Zn₃(VO₄)₂ polymorphs as the secondary phase with ZnO as the primary phase. The Zn₃(VO₄)₂ polymorphs resided at the triple point junctions or were embedded in ZnO grains. Henceforth, the results showed that V₂O₅ doping can facilitate the sintering process of the varistor ceramics, particularly in the phase formation. This contributed to better electrical properties, especially to 0.2 mol%. The density of the sintered ceramic decreased from 5.32 to 5.06 g/cm³ and the average grain size increased in the range of 11.02 to 31.39 µm with an increased of sintering temperature from 1200 to 1300 °C, respectively.

(Received April 24, 2016; Accepted July 4, 2016)

Keywords: Zinc oxide varistor, V2O5, sintering temperature, ZBSM

1. Introduction

Zinc oxide (ZnO) based varistors are electronic semiconducting ceramic materials that possess high energy absorption capability to protect electronic appliances against an unwanted voltage surge transmitted into the electronic components that can possibly cause damage [1]. They are simply achieved by sintering a ZnO powder mix with some minor metallic oxides. Moreover, ZnO varistor materials form a polycrystalline structure after sintering, consisting of semiconductor ZnO grains [2]. The type of additives used is greatly important in it's fabrication, leading to the formation of secondary phases at the grain boundary that trigger the J-E characteristics [3].

Generally, the electrical properties, such as nonlinear coefficient (α), leakage current density (J_L), breakdown field (E_b), and barrier height (ϕ_b) are controlled by the structure of the

Corresponding author: azmizak@gmail.com

grains and grain boundaries, mostly originating from the segregation of heavy metal oxide, such as Bi_2O_3 , Pr_6O_{11} and V_2O_5 on ZnO grains or grain boundary [4-5]. The nonlinear current densityelectric field (J-E) characteristics of a ZnO based varistor is determined from the total number of grain-boundary layers that can be generated during the sintering process, including the formation of the electronic ϕ_b [6]. Consequently, the addition of minor oxides of MnO₂ in small percentages can avoid Bi_2O_3 and V_2O_5 evaporation during the sintering process [7]; also, Sb_2O_3 addition leads to the formation of a $Zn_7Sb_2O_{12}$ spinel phase which reduces the mobility of the grain boundaries and regulates the ZnO grain growth [8-9].

Recent studies have revealed that V_2O_5 along with a varistor previously added on ZnO has the advantage in terms of lowering the sintering temperature, but there is no improvement in the electrical properties. There is a need for incorporation of many additives to improve the α of the varistor [10, 11, 12]. Accordingly, the combined effects of MnO₂, Pr₆O₁₁, Co₃O₄ and Sb₂O₃ on the ZnO–V₂O₅ contributes to the varistor E_b potential, which acts from highly resistive to extremely conductive; also, the ceramic can be sintered at a high temperature of above 1250 °C [12, 13, 14].

Although, the effect of the sintering temperature on V_2O_5 doped ZnO-Bi₂O₃-Sb₂O₃-MnO₂ (ZBSM) based varistor ceramics has not been studied symmetrically, there has been a report in literature on the combined effect of ZnO-V₂O₅-MnO₂-Nb₂O₅-Bi₂O₃ ceramics, recently [15]. In addition the combined effect of ZnO-V₂O₅-MnO₂-Nb₂O₅ ceramics was reported [16]. Mn₃O₄ doping in ZnO-V₂O₅ varistor ceramics was also reported to control ZnO abnormal grain growth [17]. As reported earlier, incorporation of V₂O₅ additives markedly enhanced the densification rate of the ZnO materials [18]. Also, the grain-growth rate of the ZnO materials was significantly increased because V₂O₅ acted as a liquid phase sintering.

Generally, V_2O_5 improved the electrical properties in particular the nonlinear J-E characteristics of ZnO based varistor ceramics [19]. Another important parameter to be considered is the microstructural properties in which the varistor electrical properties can be determined, particularly the J-E characteristics of the ZnO based varistor ceramics. The responsible mechanism is the grain boundary; better grain boundaries produce optimum nonlinear J-E characteristics [20-21].

Recently, the investigation on the effect of V_2O_5 doped ZnO at 0.5 mol% and low sintering temperature has received major attention in specific the degradation behavior, electrical properties and microstructure [22, 23, 24]. However, many problems related to ZnO based varistors such as abnormal grain boundaries need to be solved in order to use them for commercial purposes. The selected type of sintering process for a specific composition is needed in order to improve the α of ZnO-V₂O₅ based ceramics [22]. As a result, it is significant to investigate how a small amount of V₂O₅, between 0.08 to 0.4 mol%, will significantly affect the performance of ZnO varistor properties in different sintering temperatures.

Numerous processing conditions have been established to improve the microstructural and electrical properties of ZnO varistor ceramics; several studies discovered that had a combined effect of ZnO–V₂O₅–MnO₂ varistor ceramics sintered between 1200-1300 °C for 4 hrs and the holding time did not give any nonlinear electrical properties [19, 25]. The effect of the sintering temperature on the additive of V₂O₅ commonly found in the well-studied ZBSM is still not reported in literatures.

In this work, a study on the effect of sintering temperature on V₂O₅ doped on ZBSM based variator ceramics has been systematically studied for different sintering temperatures, and for its dependence on electrical and microstructure properties. It is unique compared with those previous works in term of the processing conditions; sintering temperature, sintering time, and additives. Here, the sintering temperature, time and selected of V₂O₅ doping used were >1200 °C, 4 h, and 0.2 mol%, respectively, compared to that of others were 900 °C, 10 min, and 0.5 mol% [18]. We expected that the electrical properties, particularly α , would increase to an optimum with the increase of sintering temperature and doping.

A high purity of metal oxide powders were obtained from Sigma-Aldrich; ZnO (99.9%), V₂O₅ (99.6%), Bi₂O₃ (99.98%), Sb₂O₃ (99.6%) and MnO₂ (86.93%), and the design ceramic system is $ZnO_{(98.8-x)}V_2O_{5(x)}Bi_2O_{3(0,7)}MnO_{2(0,7)}Sb_2O_{3(0,3)}$ where x is varied from 0.08 to 0.4 mol% at chosen sintering temperature 1250 °C. Later at an optimum x mol% of V_2O_5 in ZBSM ceramic the sintering temperature was varied between 1200 to 1300 °C to obtain further optimum in microstructure and electrical properties. The raw materials were mixed by ball-milling with zirconia balls in a polypropylene bottle for 24 h in acetone and a small addition of deionized water to avoid the sedimentation of heavy particles like Sb_2O_3 . 0.75wt% polyvinyl alcohol as binder was added. The mixture was dried at 110 °C for 19 h in an oven and granulated using an agate mortar/pestle. The powder was sieved with a 75 micron mesh screen to produce the starting powder. The powder was pressed into discs (pellets) of 10 mm diameter and 1 mm thickness at a pressure of 50 MPa. The pellets were sintered in air in intervals of 4 h, with heating and cooling rates of 5 °C/min and finally, furnace-cooled to room temperature. The sintered samples were polished to a 0.89 mm thickness using SiC paper, P1200. For electroding, silver paste was coated on both side of its faces for areas of approximately 0.238 cm² and then heated at 550 °C for 12 min to form ohmic contacts.

2.1 Characterization method

The J-E characterization of the samples was recorded at room temperature by using a source measure unit (Keithley 2400). From it, the constant α was obtained by using the expression [26];

or

$$J = aE^{\alpha} \tag{1}$$

$$\alpha = \frac{(\log J_2 - \log J_1)}{(\log E_2 - \log E_1)} \tag{2}$$

where the varistor electric fields E_2 , E_1 were taken at current densities $J_2 = 10 \text{ mA/cm}^2$, $J_1 = 1 \text{ mA/cm}^2$, and the J_L was evaluated at $0.85V_{1mA}$

Scanning electron microscope (SEM, JEOL JSM-6400) in conjunction with energy dispersive X-ray (EDX) was used to determine the morphological structure and elements within the composition. The XRD pattern of the prepared samples was recorded using (PANalytical X'Pert Pro PW3040/60, Philips). The samples were radiated with Ni-filtered CuK α radiation ($\lambda = 1.5428$ Å) within a 2 θ scan range of 20 - 80° to identify the crystalline phases; the data were analyzed using X'Pert High Score software. The density of the sintered pellets was measured with a digital electronic densitometer, and the average grain size was calculated by using the linear intercept method [27],[28].

$$d = \frac{1.56L}{MN}$$
(3)

where L is the random line length on the micrograph, M is the micrograph magnification and N is the number of grain boundaries intercepted by lines.

3. Results and discussion

3.1 Phase identification

Fig. 1(a) shows the XRD pattern of phases obtained by the doping x of 0.08, 0.2, 0.4 mol% V_2O_5 composition in ZBSM ceramics sintered at a chosen sintering temperature which is 1250 °C. Fig. 1(b) is the pattern of sample produced from five sintering temperatures, 1200 to 1300 °C, for the selected x=0.2 mol% V_2O_5 based on the

optimum α from E-J characteristic. A strong peak related to the Zn₃(VO₄)₂ minor phase was detected. Usually, Zn₃(VO₄)₂ is found to be fixed in ZnO grains or at triple point junction grains [7, 24]. The existence of Zn₃(V₄)₂ could not be confirmed by XRD analysis at 1300 °C due to the volatility of the V-species; also, the main peak of Zn₃(VO₄)₂ had already overlapped with those of the Zn₇Sb₂O₁₂ spinel.

Fig. 1: Shows XRD peaks of the sample, (a) sintered at 1250 °C of three different mol% V_2O_5 (0.08 - 0.4) and (b) doped at 0.2 mol% V_2O_5 sample sintered at five different temperatures.

The trace for elevated temperatures revealed the presence of ZnO as the only primary phase; and, a few secondary phases, such as, BiVO₄, MnVO₃ and Zn₃(VO₄)₂ polymorphs, related to the V and Zn₇Sb₂O₁₂ species as the only secondary phases were detected. The presence of BiVO₄ shows that Bi and V-rich, a liquid phase sintering, has aided this result to be consistent with [15]. The formation of the Zn₇Sb₂O₁₂ spinel phase at 1200 °C, the initial temperature, until 1300 °C was found to control the abnormal ZnO grain growth and enhance the sintering process for the solubility of ions, such as the Zn and Bi-reach liquid phase, which were reported from literatures [26, 9]. The indexed spinel phase of Zn₇Sb₂O₁₂ obtained was a cubic structure with (ref. code: 00-014-0613). However, the XRD patterns show the presence of a MnVO₃ anorthic structure (ref. code: 00-024-1260), Zn₃(VO₄)₂ in an orthorhombic structure (space group Abam), with (ICDS ref. code: 00-034-0378), BiVO₄ Orthorhombic with (ref. code: 00-012-0293) space group P nca. These are in addition to the major phase of the ZnO hexagonal structure.

3.2 Microstructure Characterizations

Fig. 2 (a to c) shows the microstructure of the sample with 0.08, 0.2 and 0.4 mol% of V_2O_5 content; all the ceramics were sintered at 1250 °C. The microstructure of the ceramics are well pronounced. Thus, the average grain size decreased gradualy from 24.79 to 17.22 µm with increased in V_2O_5 content. This may likely be due to the presence of the $Zn_7Sb_2O_{12}$ spinel phase that can inhibit the ZnO grain growth [34]. The presence of pores decreased the relative density from 5.32 to 5.06 g/cm³, for ceramic sintered at 1200 – 1300 °C may be this happen as a result of V_2O_5 volatility [12, 23] during sintering. Also, for 0.08 - 0.4 mol% V_2O_5 dopants sintered at 1250°C, maximum density of 5.12 g/cm³ was observed from the ceramic doped with 0.2 mol% V_2O_5 , see Table 1 below.

The EDX analysis confirmed the presence of Zn, Mn, V, Bi and Sb elements at the grain interior, grain boundaries and triple point junction coexisting in bulk Zn grains; Fig. 3, spectrum

(1, 2 and 3). Although it was reported that no V species was located in the ZnO grains' interior [18].

Fig. 2: Microstructure of V₂O₅ doped ZBSM based ceramics (a) 0.08 mol%, (b) 0.2 mol% and (c) 0.4 mol% sintered at 1250 °C

Fig. 3: EDX spectra for sample of 0.2 mol% of V₂O₅ content sintered at 1200 °C

Evidently form Fig. 4, a clear grain, with the exception of grain size, was monitored. The grain size and shape of the ceramics sintered at 1200 °C were different. The sample shows two different types of grains, the bulk grain ZnO phase and the inter-granular phase with defects concentrated on the surface. This result is consistent with the previous work [30]. During the sintering, the material was in thermodynamic equilibrium; so, there was a high Schottky type. Therefore, the defects formed on the surfaces on the bulk grains during cooling and annihilation [31]. The vanished defect concentration was mainly composed of V-species which were located at the triple junctions, this was confirmed by the EDX analysis in Fig. 4 (spectrum 1). When the temperature increased from 1250 to 1300 °C, the inter-granular phase disappearance detected and this is due to the high reactivity of the V-species at a higher temperature, which can be found in the grain boundary EDX analysis (spectrum 2). However, the average grain size increased to a maximum of 31.39 μ m at 1300 °C. This was caused by the V-species that possibly melted easily on the ZnO grains interior leading to the exaggerated ZnO grains [32]. The exaggeration of the ZnO grain was potentially contributed to by the addition of V₂O₅ and its lower melting point (690

°C). This was a clear fact on the sample sintered at temperatures higher than the temperature at which the liquid phase occurred [33]. The presence of pores was attributed to the volatility of V_2O_5 at higher temperatures.

Fig. 4(a-c): SEM micrographs of the V₂O₅ doped ZBSM ceramics sintered between 1200-1300 °C

3.3 Electrical Characterization

Fig. 5(a) showed the J-E characteristic curve of sample sintered between 1200-1250 °C and doped at 0.2 mol% and Fig. 5(b) that of doped at 0.08, 0.2, 0.4 mol% and sintered at optimum temperature, 1250 °C. The electrical properties, such as α , ϕ_b , J_L , E_b , and microstructure properties, such as average grain size and relative density are summarized in Table 1.

Fig. 5: The J-E characteristics curve of the ceramics samples (a) doped with 0.2 mol% V_2O_5 sintered between temperature 1200-1300 °C and (b) doped between 0.08, 0.2 and 0.4 mol% V_2O_5 at 1250 °C.

The α results confirmed 1250 °C as the optimum sintering temperature with composition 0.2 mol% of V₂O₅ doped ZBSM ceramics sintered between 1200-1300 °C. However, at an optimum sintering temperature 1250 °C varying the dopants from 0.08 and 0.4 mol% the α does not significantly improved in comparison to 0.2 mol% of V₂O₅ doping. This means that sintering temperature 1250 °C and 0.2 mol% of V₂O₅ doped ZBSM is the optimum condition to achieve α value in the current process condition. The α value of 12.18 was accompanied by lowest J_L around 1×10^{-4} mA/cm² and a maximum ϕ_b of 1.38 eV; the larger the ϕ_b is the better is the α value [35]. Fig. 5(a) and (b) show the relation between ϕ_b , E_b and α as a function of temperature. Further increasing the sintering temperature caused α to decrease to 3.30 at 1300 °C. This was associated with the partial disappearance of the grain boundaries caused by a large growth of ZnO grains at a high temperature, which caused the reduction of E_b to 12.10 V/mm and the J_L to increase to a maximum value of 6×10^{-4} mA/cm². The increase in grain size led to the retardation of the grain boundaries which can hinder it and cause a poor performance of the ZnO varistor ceramics [13 – 20]. Table (1) shows the electrical parameters for the samples with and without V₂O₅ contents. In

712

addition, the homogeneity of the sintered sample contributed to the variation of the electrical properties of the individual grain boundary, particularly at 1250 °C

V ₂ O ₅ doping (mol%)	Sintering temperature (°C)	d (µm)	ρ (g/cm ³)	ф _b (eV)	E _b (V/mm)	$ \begin{array}{c} \mathbf{J_L} \\ (\mathrm{mA/cm}^2 \\) \end{array} $	α
	1200	12.02	5.32	0.53	22.90	3×10 ⁻⁴	5.51
	1225	14.87	5.28	0.65	60.50	2×10^{-4}	10.37
0.2	1250	20.99	5.22	1.38	50.20	1×10^{-4}	12.18
	1275	22.81	5.11	0.47	39.20	2×10^{-4}	8.63
	1300	31.39	5.06	0.46	12.10	6×10 ⁻⁴	3.31
0.08	1250	23.09	5.02	1.00	56.95	1×10 ⁻⁴	7.78
0.4	1250	17.22	5.12	1.03	32.0	1×10 ⁻⁴	8.67

Table 1: Electrical and microstructural properties for the V_2O_5 doped of ZBSM based varistor ceramics sintered at various temperatures and compositions.

In addition, the homogeneity of the sintered ceramics contributed to the variation of the nonlinear electrical properties of the individual grain boundary, particularly at 1250 °C with 0.2 mol% V_2O_5 doped ZBMS [36]. It is a clear indicator that that the nonlinear electrical properties of the ZnO varistor are influenced by its microstructure as shown in the SEM micrographs, Figs. 3 and 4.

Fig. 6: The relationship between (a) E_b , α , and (b) ϕ_b , α , with sintered temperatures (1200-1300 °C).

Conclusion

The effect of the sintering temperature ranging from 1200 to 1300 °C and the composition of V_2O_5 (0.08 to 0.4 mol%) on the ZBSM based variator ceramics was investigated. The results indicated that the optimum temperature that give the best in term of microstructure and electrical properties is at 1250 °C with 0.2 mol% of V_2O_5 . Then by varying the dopant composition at this temperature it was observed that 0.2 mol% also give the optimum microstructure and electrical properties. The ceramic sintered at 1250 °C and 0.2 mol% of V_2O_5 exhibited the largest ϕ_b , low J_L with the best α around 12.18 and the E_b of 50.20 V/mm.

Acknowledgement

The authors are grateful to the Universiti Putra Malaysia for supporting this work under the Universiti Putra Malaysia grant No. GP-IBT/2013/9421100.

References

- [1] A. Sedky, M. Abu-Abdeen, A. A. Almulhem Phys. B Condens. Matter 388(1-2), 266 (2007).
- [2] V. O. Varistor, C. Diao, S. Chien, C. Yang, H. Chan, Y. Chen, and H. Chung Key Engineering Materials 372, 493 (2008).
- [3] J. O. Akinnifesi and O. O. Akinwunmi J. Mater. Sci. Res. 3(40), 40 (2015).
- [4] M. Dorraj, A. Zakaria, Y. Abdollahi, M. Hashim, and S. Moosavi Sci. World J. 20(14), 9 (2014).
- [5] C. Leach, Z. Ling, and R. Freer J. Eur. Ceram. Soc. 16, 2759 (2000).
- [6] H. H. Hng and P. L. Chan Mater. Chem. Phys. 75(1–3), 61 (2002).
- [7] O. A. Desouky, S. E. Mansour, E. M. Negim, A. M. Najar, R. Rakhmetullayeva, P. I. Urkimbaeva, and W. Midlands World J. Chem. 8(2), 33 (2013).
- [8] T. Asokan, G. N. K. Iyengar, and G. R. Nagabhushana, J. Mater. Sci. 22(6), 2229 (1987).
- [9] C. H. Lu, N. Chyi, H. W. Wong, and W. J. Hwang, Mater. Chem. Phys. 62(2), 164 (2000).
- [10] H. Pfeiffer and K. M. Knowles J. Eur. Ceram. Soc. 24(6), 1199 (2004).
- [11] Y. W. Hong and J. H. Kim, Ceram. Int. 30(7), 1301 (2004).
- [12] J. H. Ju, H. Wang, and J. W. Xu Adv. Mater. 320, 240 (2011).
- [13] H. H. Hng and K. Y. Tse J. Mater. Sci. 38(11), 2367 (2003).
- [14] G. Chen, X. Chen, X. Kang, and C. Yuan J. Mater. Sci. Mater. Electron. 26(4), 2389 (2015).
- [15] C. W. Nahm Ceram. Int. **39**(2), 2117 (2013).
- [16] C. W. Nahm J. Mater. Sci. Mater. Electron. 23(2), 457 (2012).
- [17] C. W. Nahm J. Mater. Sci. Mater. Electron. 19(10), 1023 (2008).
- [18] C. Kuo, C. Chen, and I. Lin J. Am. Ceram. Soc 81(11), 2942 (1998).
- [19] H. H. Hng and P. L. Chan Ceram. Int. **30**(7) 1647 (2004).
- [20] J.-K. Tsai and T.-B. Wu J. Appl. Phys. 76(8) 4817 (1994).
- [21] R. A. Winston and J. F. Cordaro J. Appl. Phys. 68(12), 6495 (1990).
- [22] M. Mirzayi and M. H. Hekmatshoar Phys. B Condens. Matter 414, 50 (2013).
- [23] M. Peiteado, J. F. Fernández, and A. C. Caballero J. Eur. Ceram. Soc. 27(13-15), 386 (2007).
- [24] H. H. Hng and K. M. Knowles J. Am. Ceram. Soc. 83(10), 2455 (2000).
- [25] C.-S. Chen, C.-T. Kuo, and I.-N. Lin J. Mater. Res. 13(06), 1560 (2011).
- [26] A. Gubański, W. Mielcarek, K. Prociów, J. Warycha, J. M. Wróbel Material Science-Poland 27(4/2), 1207 (2009)
- [27] M. G. M. Sabri, B. Z. Azmi, Z. Rizwan, M. K. Halimah, M. Hashim, M. H. M. Zaid Int. J. Phys. Sci. 6(6), 1388 (2011).
- [28] A. Badev, S. Marinel, R. Heuguet, E. Savary, and D. Agrawal Acta Mater. 61(20), 7849 (2013).
- [29] Y. W. Lao, S. T. Kuo, and W. H. Tuan, J. Electroceramics 19(2-3), 187 (2007).
- [30] P. Q. Mantas and J. L. Baptista J. Eur. Ceram. Soc. 15(7), 605 (1995).
- [31] F. Kharchouche, D. E. C. Belkhiat, and S. Belkhiat IET Sci. Meas. Technol. 7(6), 326 (2013).
- [32] H. H. Hng and L. Halim Materials letter. 57(8), 1411 (2003).
- [33] S. Bernik, N. Daneu, and a. Rečnik J. Eur. Ceram. Soc. 24(15-16), 3703 (2004).
- [34] R. Guo, L. Fang, H. Zhou, X. Chen, D. Chu, B. Chan, and Y. Qin J. Mater. Sci. Mater. Electron. 24(8), 2721 (2013).
- [35] F. Jiang, Z. Peng, Y. Zang, and X. Fu J. Adv. Ceram. 2(3) 201 (2013).
- [36] C. Zhang, Y. Hu, W. Lu, M. Cao, and D. Zhou J. Eur. Ceram. Soc. 22(1), 61 (2002).