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In this study, Finite Difference Time Domain (FDTD) is employed to model and simulate 

both dielectric materials and metamaterials. Interestingly, the metamaterials own very 

peculiar characteristics that are related to the simultaneous negative permittivity and 

permeability. Based on FDTD technique, we can simulate the electromagnetic devices 

with the inclusion of the simultaneous electric and magnetic fields over time. The 

striking features of metamaterials illustrate the increase and backward propagation as 

well as the energy absorption in one-dimensional (1D) or two-dimensional (2D) systems. 

These systems could have potential applications, such as    metamaterial superlens. 
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1. Introduction 
 
During the past few years, a new technique for designing electromagnetic structures has 

been suggested, where the electromagnetic waves could be modulated within a material by 

incorporating the spatial variation in the constitutive parameters. The triggered notion of 

metamaterials aroused a great deal of consideration of scientists for this kind of stimulating 

applications in various frequency regimes from microwave, terahertz (THz), infrared (IR), optics, 

and acoustics, etc. In aerospace functionalities, invisibility yields prohibiting information about an 

object to attain radar-like detectors [1-6].  

The Finite Difference Time Domain (FDTD) method, represents a powerful and an 

effective technique that is extensively employed with successful manner for simulating and 

modeling the electromagnetic wave interaction at different frequencies dispersion and non-

dispersed materials. In order to establish a new behavior, a manipulation through the dielectric and 

magnetic response of a material is necessary. At this stage, it is feasible to involve metamaterials 

as an effective medium tailored to acquire the desirable macroscopic characteristics via sub-

wavelength design. The prosperous fabrication of such metamaterials, emerged a prominent 

consideration in the exploration of metamaterials by scientists from the diverse arenas. The 

realization of metamaterials paved the pathway for various tremendous applications, such as 

sub-wavelength imaging, solar cell design, and antennas [7-13].  

The purpose of this work is to simulate the propagating electromagnetic waves both in 

dielectric material and metamaterial (1D and 2D systems) by employing FDTD technique, 

while the description of the method as well as the softwares that were used and changed 

according to our simulated results, are provided in Refs. [13,14]. Also, we are mainly 

concerned by involving the effect of varying the lattice cells in x-y directions, waveguides and 

dielectric constants of the medium on the variation of propagating electromagnetic wave in 1D and 

2D-systems. 
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2. Method of simulation: Finite Difference Time-Domain method 
 

The FDTD is one of a commonly used technique for the solution of electromagnetic 

problems. Both conceptually and in terms of implementation, it can accurately tackle a wide range 

of problems even for programming three-dimensional systems. The FDTD method employs finite 

differences as approximations to both the spatial and temporal derivatives that appear in 

Maxwell’s equations (specifically Ampere’s and Faraday’s laws) [14]. 

 

 
2.1. FDTD in two dimensions 

We will start with the Maxwell’s normalized equations [14]: 

 

 
𝜕𝐷

𝜕𝑡
=  

1

√ԑ0 μ0
 𝛻 × 𝐻                                                     (1)      

                    

𝐷(𝜔) =  ԑ𝑟 (𝜔) ∙ 𝐸(𝜔)                                                                (2) 

 
𝜕𝐻

𝜕𝑡
=  −

1

√ԑ0 μ0
 𝛻 × 𝐸                                                 (3) 

 

Here D is the electric flux density, H is magnetic field, E is the electric field,  ԑ0 and μ0 
are the permittivity  and permeability  in  vacuum,  and ԑ𝑟 is the relative permittivity.  In a two-

dimensional simulation we need to choose between two modes:  (1) the transverse magnetic 

(TM) mode, which  is  composed  of Ez,  Hx,  and Hy,  or (2)  transverse  electric  (TE) mode, 

which  is  composed  of  Ex,Ey,  and  Hz.   By using the TM modes, the equations above will be 

reduced to: 

 

 
𝜕𝐷𝑧

𝜕𝑡
=  

1

√ԑ0 μ0
(

𝜕𝐻𝑦

𝜕𝑥
−

𝜕𝐻𝑥

𝜕𝑦
)                                                        (4)                         

 

𝐷𝑧(𝜔) =  ԑ𝑟 (𝜔) ∙ 𝐸𝑧(𝜔)                                                      (5) 
 

𝜕𝐻𝑥

𝜕𝑡
=  −

1

√ԑ0 μ0

𝜕𝐸𝑧

𝜕𝑦
                                                            (6) 

 
𝜕𝐻𝑦

𝜕𝑡
=  

1

√ԑ0 μ0

𝜕𝐸𝑧

𝜕𝑥
                                                          (7) 

 

To solve an electromagnetic problem, the idea is to simply discretize both in time and 

space Maxwell’s equations with central difference approximations (see figure 1). In this cell 

electric and magnetic components are distributed half time step shift and half special step shift in a 

way that makes every single electric point surrounded by four magnetic points and vice versa [14]. 
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Fig. 1.  Interleaving for the two-dimensional TM formulation [14].  

 

By plugging equations (4), (6),and  (7)  into  the  finite  difference  scheme results in: 

 

𝐷𝑧
𝑛+1/2

 (𝑖,𝑗)−𝐷𝑧

𝑛−
1
2(𝑖,𝑗)

𝛥𝑡
=  

1

√ԑ0 μ0

𝐻𝑦
𝑛 (𝑖+1/2,𝑗)−𝐻𝑦

𝑛(𝑖−1/2,𝑗)

𝛥𝑥
  −

1

√ԑ0 μ0

𝐻𝑥
𝑛 (𝑖,𝑗+1/2)−𝐻𝑥

𝑛(𝑖,𝑗−1/2)

𝛥𝑥
        (8)         

                 

𝐻𝑥
𝑛+1 (𝑖,𝑗+1/2)−𝐻𝑥

𝑛(𝑖,𝑗+
1

2
)

𝛥𝑡
= − 

1

√ԑ0 μ0

𝐸𝑧
𝑛+1/2

 (𝑖,𝑗+1)−𝐸𝑧
𝑛+1/2

(𝑖,𝑗)

𝛥𝑥
                             (9) 

 
𝐻𝑦

𝑛+1 (𝑖+1/2,𝑗)−𝐻𝑦
𝑛(𝑖.𝑗+1/2)

𝛥𝑡
=  

1

√ԑ0 μ0

𝐸𝑧
𝑛+1/2

 (𝑖+1,𝑗)−𝐸𝑧
𝑛+1/2

(𝑖,𝑗)

𝛥𝑥
                          (10) 

 

Equation (8) gives the temporal derivative of the electric flux density in term of the spatial 

derivative of the magnetic field. Conversely, equations (9)-(10) provide the temporal derivative of 

the magnetic field in terms of the spatial derivative of the electric field [2]. These two equations 

represent a plane wave traveling in the z-direction [3]. Then it is possible to solve the resulting 

difference equations to obtain "update equations that express the (unknown) future fields in terms 

of (known) past fields. The magnetic fields are estimated one time-step into the future so they 

are now known (effectively they become past fields), while the electric fields one time-step 

into the future so they are now recognized (actually they become past fields). This procedure 

can repeat the previous two steps until the fields have been obtained over the desired duration. 

Where n is time t = 4t · n, the term n + 1 means one time step later, and the time step 4t 

is defined by: 

 

 𝛥𝑡 =
𝛥𝑥

2∙𝑐
                             (11) 

 

Where c is the speed of light, and 4x is the cell size [14].  

There are two cases for the determination of electromagnetic (EM) sources, such as the 

generation of a continuous wave (CW) signal or a short pulse. Always there is a minimum 

wavelength (maximum frequency) of interest.  The cell size must be much smaller than minimum 

wavelength.   

There are typically two general classes of electromagnetic wave sources; the soft source 

which consists of impressing a current and the hard source which consists of impressing an electric 

field. The physical meaning of the soft source is well understood and its analytical solution is 

known [14]. The source may be insert at any node (may be any value between first and 

last node) by a time dependent source function g(t) (the soft source: Gaussian pulse ) as [14]: 

 

       g(t) = exp{−( 
t − t0 

)
2
}                               (12) 
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t is the time delay and t0 indicates pulse width.  

We employ in this simulation Gaussian source as source, as describe in Ref [14]. A 

perfectly matched layer   (PML) is commonly used to truncate the computational regions in 

numerical methods to simulate problems with open boundaries, especially in the FDTD. A 

PML is an artificial absorbing layer for wave equations, there are several equivalent 

formulations of PML.  ABCs creates a numerical representation that makes a grid with a finite 

number of electric and magnetic field points to behave as if they were infinite. With these 

conditions, the wave will be completely “absorbed”
 
by the termination. If a wave is moving to a 

boundary in free space, it is traveling by speed of light c0 in one time step in FDTD. The reason 

for using PML is its effectiveness and versatility in working with different media [14-19]. 

Here the FDTD technique and the softwares that were modified according to our simulated 

results, are represented in Refs. [13,14]. 

 
 
3. Results and discussion 
 

3.1. The electric field (Ex and Ey) and magnetic field (Hz) in 2D system 

The electric field (Ex and Ey) and magnetic field (Hz) distributions in two dimensional free 

space and dispersive materials, are simulated by altering the constant dielectric constant and 

number of cell lattices. A Gaussian pulse was employed with frequencies excitations arising at 

left side of the x-y cells, which are propagating outward and are absorbed without showing any 

reflection back in the problem space. The fields at the edge must be propagating outward. The 

point at the end of the grid reflects any field that is facing it. Reflecting fields make distortion in 

the problem space. ABCs are necessary to prevent E and H fields reflected back into the problem 

space.  

As displayed in Figs. (2-4), a comparative study was set by varying the dielectric 

constant of the medium from the free space to dispersive medium. In the beginning, the 

systems were excited and the electromagnetic waves were propagated along Ex, Ey, and Hz, 

respectively in circular shape when the time step was varied. The variation of propagating 

wave depends not only on the variation of medium by changing the dielectric constant, also it 

depends on the change of the unit cells along x-y directions. 
 

 
 

Fig. 2. Electric field propagation at different size cells (4, 8, and 12) and frequency= 5GHz with  = 1 (free 

space). 
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Fig. 3.  Electric field propagation at different thickness of layers ( =4) and frequency=5.GHz, unit cell=8 

at different time steps. 

 
 

 
 

Fig. 4.  Electric field propagation at different thickness of layers   ( = 8) and frequency=5.0 × 10   
9
 Hz, unit 

cell=8 at different time steps. 

 

 

3.2. The electric field (Ez) in two dimensional free space and dispersive 

materials in 2D  
The electric field (Ez) in two dimensional free space and dispersive materials are 

discussed with the  alteration of the  permittivity  value () from free space to dispersive 
medium and the number of cells is varying in plane. To prohibit the reflections from lossy 
regions, the boundaries of absorbing grid is necessary for outgoing waves, by using perfectly 
matched layers. A  Gaussian pulse was started in the center of cell along x-y directions by 
using PML. The cell size and number of step are varied to see their effect on the change of the 
propagating wave. The simulated results of the electric field along z-axis are displayed in 
figures (5-7) by changing the size cells along x-y directions and by varying the dielectric 
constant from free space to dielectric materials. The propagation of the wave nature at the central 
point is varied according to the variation of the thickness and medium when the time step is 
modified from the starting of the wave excitation until the absorption of the wave at the central 
region, which are determined at various dielectric constants. It is well noticed that the electric 
field at early time response is approximately the same at all different dielectric constants when the 
number of layers is equal to 100. However, the propagating wave is varying at the end of time 
step and this is due to the fact that the medium is more dispersive when the dielectric constant 
is  increased. 
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Fig. 5. The electric field along z-direction versus x-y and   = 1. Frequency=3 × 10
7 

Hz and number of 

cells=100 at different time    steps. 

 

 

 

 

Fig. 6. The electric field along z-direction versus x-y and  = 6. Frequency=3 × 10
7 

Hz and number of 

cells=100 at different time      steps. 
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Fig. 7. The electric field along z-direction versus x-y and  = 8 Frequency=3 × 10
7 

Hz and number of 

cells=100 at different time  steps. 

 

 

It is well remarkable from figures (8-10) with the increase of the thickness up to 100, 

the wave propagation is changed in comparison with figures (5-7), even though keeping the 

same values of permittivity (by varying them from free space to dielectric medium). Here the 

time step is kept fixed for all cases.     

 

 
 

Fig. 8. The electric field along z-direction versus x-y and Frequency=3 × 10
7 

Hz for cell lattices=50 and 

100 for left and right panel ( = 1). 
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Fig. 9. The electric field along z-direction versus x-y and Frequency=3 × 10
7 

Hz for cell lattices=50 and 

100 for left and right panel ( = 6). 

 

 

 
 

Fig. 10. The electric field along z-direction versus x-y and Frequency=3 × 10
7 

Hz for cell lattices=50 and 

100 for left and right panel ( = 8). 

 

 

3.3. Wave guide in 2D systems  
The structures are constructed in such way that a defective bended line is created. We 

simulated the electric field distribution Ez which is computed when varying the number of cells 

from 7 to 11 in x-y axis. As shown in Figs. (11-13), a thin dielectric slab composed of different 

cells along x-y direction shows that the light can also be confined in the horizontal direction and 

then it is dispersed in bended direction. This is due to the index contrast between the slab and its 

surrounding. Note that the source excitation is a Gaussian pulse with a carrier frequency of 5 

GHz. Combined with the wave guiding along a line defect within the plane of the dielectric 

material, a possible 2D light confinement in dielectric materials can be established. Now, we 

keep the thin dielectric material with fixed cell=11 in x-y direction with variation of 

permittivity values from 5 to 11. It is well remarkable that the propagating wave displays a 

larger energy loss after certain time step for lower permittivity constant and the loss of energy 

is reduced with the increase of permittivity constant up to 11, as noticed in Figs. (14-16). The 

wave guiding in dielectric materials control the propagation characteristics for electric field 

distribution in these systems. However, it is clear from Figs. (17-19) that a total reflective light 

is occurring for negative permittivity values. This behavior is interesting in metallic wave 

guiding with negative permittivity media. 
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Fig. 11. The electric field distribution along z-direction versus x-y number of cells=7 and  = 11.4. 

 
 
 

 
 

Fig. 12. The electric field distribution along z-direction versus x-y number of cells=11 and  = 11.4. 

 
 

 
 

Fig. 13. The electric field distribution along z-direction  versus x-y number of cells=15 and  = 11.4. 
 
 
 

 
 

Fig. 14. The electric field along z-direction versus x-y for positive epsilon values ( = 5)  and number of 

cells=11 at different time step. 
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Fig. 15. The electric field along z-direction versus x-y for positive epsilon values ( = 7) and number of 

cells=11 at different time step. 

 

 

 
 

Fig. 16. The electric field along z-direction versus x-y for positive epsilon values  

( = 11) and number of cells=11 at different time step. 

 
 

 
 

Fig. 17. The electric field along z-direction versus x-y for positive epsilon values ( = −5) and number of 

cells=11 at different time step. 

 

 

 
 

Fig. 18. The electric field along z-direction versus x-y for positive epsilon values ( = −7) and number of 

cells=11 at different time step. 
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Fig. 19. The electric field along z-direction versus x-y for positive epsilon values  

( = −11) and  number of cell=11 at different time step. 

 

 

3.4. The electric field distribution for dielectric materials and metamaterials 

In one dimensional case, the electric field distribution varies with the variation of time step 

for the case of dispersive materials and metamaterials having positive and negative permittivity 

which is analyzed using FDTD method, as displayed in figure 20. The frequency of operation is 

given to be 0.7959 GHz for the purpose to provide a negative refractive index. The time step size 

is selected in such way to be much smaller than the mesh density. The related time step is 

computed by means of ∆(t) = 0.5, ∆ (x)/c, and c represents the speed of light. The metamaterial 

cell is increased up to 100 cells. Outside this regime, the space is considered to be free space. The 

absorbing blocks are centered at center to truncate the problem space. A sinusoidal source was 

employed in the free- space regime. It is clear from Fig. 20 that the wave amplitudes in 

metamaterials are significant than the normal free space, as well as of dispersive region. It is hence 

the metamaterial increases the energy or intensity at the central regime. It is clear then the 

absorbing energy is maximum from the surrounding media. 
 

 
 

Fig. 20. Electric field distribution and transmission coefficient versus the frequency for positive epsilon 

values ε2=2, and ε1=-2, 2, and 6 for left, middle, and right panels. 

 

 

3.5. Positive       refractive  index  in  dielectric  material          and      negative  refractive  in     

                      metamaterials 

The metamaterials are illustrating negative refractive index and own a characteristic not 

occurring in conventional materials. For this reason, metamaterials underscore notable 

capability for simplifying novel advancements in electromagnetism. In the case of one 

dimensional, the medium is considered; where the metamaterial slab is inserted between the 

two positive layers (ε > 0, μ > 0) layer. To formulate the metamaterial layer, the source 

frequency is equal to 0.7959 GHz  

Our simulations are performed for negative-refractive index (n=-2) metamaterial in 

comparison with dielectric material having positive refractive index (n=2), as shown in figure 21. 
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The overall index of refraction refers to the medium in which the wave propagates through it. 

Here, the refraction at the interface of two media is considered positive for dielectric system 

and is negative for the case of metamaterial. Note that the transverse magnetic wave is set on 

x-y plane polarized magnetic field with components Hy and Hx and the polarization of the 

electric field Ez is set in a domain with two media with different permittivity constants. The 

space-step length is undertaken as 1 micron [18-19]. 
 

 
 

Fig. 21. Dielectric material with positive refractive index (n=2) for left and n=-2 for right. 

    
4. Conclusion 
 

The FDTD formulations is presented for modeling both dielectric and metamaterials by 

varying the dielectric constant of the medium and under the impact of layer thickness variation for 

2D-materials. 

-The increment in the number of cells shows a clear variation   for the wave guiding both 

in dielectric and metamaterials systems. 

-The metamaterial is able to enhance the amplitude of field component, irrespective 

with the normal dielectric media, when the wave is passing. 

-In this case, the energy will be absorbed in metamaterial medium from the surrounding 

media. 

-The source has also an important role in the absorption, transmission and reflection of 

electromagnetic wave. These systems would have potential applications, such as metamaterial 

superlens. 
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