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This study examines how quantum confinement energy affects the electrical characteristics 

represented by the energy gap. and the activation energy of indium arsenide (InAs) and 

indium phosphide (Inp) was studied using a computer program (MATLAB) version 

(R2012a), which is based on the characteristic matrix theory and Bruce's model, we found 

that the energy gap increases with the quantum confinement energy at small nanoscales, as 

well as the activation energy due to the quantum confinement effect, but these electrical 

properties decrease with the quantum confinement energy at large nanoscales. 
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1. Introduction 
 
The properties of nanomaterials are different compared to bulk materials due to the unique 

nano size (1–100 nm), in terms of their physical, chemical, electrical and magnetic properties [1]. 

Quantum dots (QD) play an important role in the construction of optical and electronic devices [2]. 

(QD) are semiconductor nanoparticles that exhibit three-dimensional confinement, and thus 

represent the limit for low-dimensional structures due to their three-dimensional carrier 

configuration Charge carriers become spatially confined when the radius of the (QD) conductor 

becomes smaller than the Bohr radius of the exciton (which is the average distance between an 

electron in the conduction band and the hole it leaves behind in the valence band) [3]. Discrete 

quantum energy levels of (QD) are more closely related to atoms [4]. Due to this similarity 

between )QD( and atoms, they are often termed as artificial atoms [5], the behavior of )QD( 

depends mainly on the confinement energy of the charge carriers (electrons and holes) [6]. For this 

reason, a deeper understanding of confinement energy in (QD) is critical. Trapping charge carriers 

in QD results in quantization of size [7], and this has important implications for the blue-shifting 

absorption and emission spectra with decreasing point size [8]. The band gap is tunable by 

changing the size of quantum dots (QD) based on the quantum confinement effect which plays an 

essential role in the optical and electrical properties of (QD). 

          
 

2. Experimental 
 

2.1. Quantum confinement energy 
Quantum confinement energy is a very important property of QD, this energy is observed 

when there is an increase in the energy gap, it is very important because it determines the emission 

energy of the quantum dot, quantum confinement energy mainly deals with the trapping of 

electrons [9]. Quantum mechanics describes a particle in the box model, that is a particle that 

moves freely in a small space surrounded by insurmountable barrier. The simplest model is a one-

dimensional system in which a particle is constrained by the length of a box from which it cannot 

escape [10]. Given the energy of confining the particle in a one-dimensional box [10]. 
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  𝐸𝑐𝑜𝑛 =
𝑛2ℏ2𝜋2

2𝑚𝐿2 
                                                                                (1) 

 

where (m) the mass of the particle, (n) the quantum number, (L) the length of the box, the above 

equation was measured as a result of fulfilling the boundary conditions imposed on the system. In 

addition, the minimum energy of the particle is at n = 1 i.e. the minimum energy of the particle is 

not zero so the above equation becomes. 

 

                   𝐸𝑐𝑜𝑛 =
ℏ2𝜋2

2𝑚𝐿2 
                                                                                     (2) 

 

The electron and the hole in (QD) are arranged like particles in a box., move freely but 

cannot move outward. Although we used the model for particles in a box to study the effect of 

quantum confinement, there are some differences in the quantum dots. There are two particles (an 

electron and a hole) inside them instead, of one particle in a box. Secondly the QDs are 

geometrically spherical and not square, so the box length is changed to the radius (rps). Also, the 

electron and hole masses are replaced by their effective masses due to their interaction with the 

crystal lattice. Thus, the ground state quantum confinement energy equation for quantum dots 

becomes the following for [11]. 

 

𝐸𝑐𝑜𝑛 =
ℏ2𝜋2

2𝑟𝑝𝑠
2

  [
1

𝑚𝑒
∗

+
1

𝑚ℎ
∗  ]                                                                     (3) 

 

 Econ: represents the quantum confinement energy 

rps: is the radius of a spherical quantum dot 

me; electron's effective mass 

mh: the gap's effective mass 

 

2.2. Effective mass approximation (EMA) mode 

This model display how the energy gap of a quantum dot in a semiconductor depends on 

the size of the (QD). It is often called the Bruce model. It is an important theoretical model that 

considers both the effective masses' values of an electron and a hole, which change according to 

the type of material. Moreover, the quantum dot energy gap variation value (∆Eg) is given 

according to this model according to the Bruce equation in the following formula [12]. 

 

∆𝐸𝑔 =
ħ2𝜋2

2𝑟𝑝𝑠
2

[
1

𝑚𝑒
∗

+
1

𝑚ℎ
∗ ] −

1.786 𝑒2

𝜀 𝑟𝑝𝑠

−
0.124𝑒4

ℎ2𝜀2
[

1

𝑚𝑒
∗

+
1

𝑚ℎ
∗ ]

−1

                                    (4) 

 

When rps represents the radius of the particle and 𝑚𝑒∗ the effective mass of the electron, 

𝑚ℎ
∗ the effective mass of the hole, and the 𝜀 relative permittivity, also known as the dielectric 

constant. 

And also 

 

∆𝐸𝑔 = 𝐸𝑔
𝑛𝑎𝑛𝑜(𝑟𝑝𝑠) − 𝐸𝑔

𝑏𝑢𝑙𝑘 

 

With which equation (4) takes the form [13]. 
 

𝐸𝑔
𝑛𝑎𝑛𝑜(𝑟𝑝𝑠) = 𝐸𝑔

𝑏𝑢𝑙𝑘 +
ħ2𝜋2

2𝑟𝑝𝑠
2

[
1

𝑚𝑒
∗

+
1

𝑚ℎ
∗ ] −
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𝜀 𝑟𝑝𝑠

−
0.124𝑒4

ℎ2𝜀2
[

1
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∗

+
 1

𝑚ℎ
∗ ]

−1

                (5) 

 

The energy gap is inversely proportional to rps
2
, as shown by the second component on the 

right-hand side of equation (5), implying that the energy gap narrows as the nano particle size 

increases. Because the strength of the columbic interaction has increased, the third term in the 
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equation can be ignored, resulting in a drop in the energy gap with decreasing rps. Because the 

third and final terms are so small in comparison to the second term, they can be overlooked. As a 

result, equation (5) becomes. 

               𝐸𝑔
𝑛𝑎𝑛𝑜(𝑟𝑝𝑠) = 𝐸𝑔

𝑏𝑢𝑙𝑘 +
ħ2𝜋2

2𝑟𝑝𝑠
2

[
1

𝑚𝑒
∗

+
1

𝑚ℎ
∗ ]                                                                (6) 

 

We observe that the energy gap widens with decreasing nanoparticle size as a result of 

quantum confinement. However, when a substance's (QD) radius approaches or equals the natural 

Bohr radius α
°
 of the exciton, which is determined by the following relation [14], the quantum 

confinement is significant. 
 

α
°

=
4𝜋𝜀°𝜀𝑟ħ2

𝑒2
[

1

𝑚𝑒
∗

+
1

𝑚ℎ
∗ ]                                                                              (7) 

 

When 𝜀𝑟 𝑎𝑛𝑑 𝜀o represent the dielectric constant of the vacuum and the semiconductor 

material, respectively, and e represents the electron charge. 

 

2.3. Characteristic matrix theory 

When electromagnetic radiation strikes a single thin film with two dividing borders that 

has been produced on the substrate material as shown in Fig. 1. 

 

 
 

Fig. 1. Depicts the impact of a plane wave on a thin film [15]. 

 

 

Using the characteristic matrix [16], which connects the optical permittivity of the system 

for any polarization and for both vertical and oblique incidence, the continuous tangential elements 

of the magnetic and electrical fields entering and leaving the system, and it is provided as the 

following formula [17]. 

 

[
𝐵
𝐶

] = [
𝑐𝑜𝑠𝛿 𝑖𝑠𝑖𝑛𝛿 𝜂1⁄

𝑖𝜂1𝑠𝑖𝑛𝛿 𝑐𝑜𝑠𝛿
] [

1
𝜂𝑠𝑢𝑏

]                                                          (8) 

 

The matrix's elements, which stand in for the electric and magnetic fields, are represented 

by the letters (B, C). The membrane's optical permittivity is represented by the number 𝜂1, and the 

substrate's optical permittivity is represented by the number 𝜂𝑠𝑢𝑏.  

The reflectivity value of the electromagnetic beam falling on a surface separating two 

different media is given by Vernel equations [18].  
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𝑅 = (
𝜂° − 𝜂1

𝜂° + 𝜂1

)
2

                                                                                 (9) 

 

where 𝜂1 and 𝜂o denote the appropriate effective refractive index for the incidence and penetration 

modes, respectively 
 

 

3. Results and discussion 
 
The values of the energy gap and the activation energy were calculated as a function of the 

change in the quantum confinement energy at the small and large nanosizes for indium arsenide 

(InAs) and indium phosphide (Inp) using a computer program (MATLAB) version (R2012a). 

 

3.1. Energy gap of (InAs, Inp) 

Initially, the relationship between the energy gap and the quantum confinement energy 

was studied as functions of the nanoscale grain size of the materials under study. We observed that 

the material behaves similarly to its behavior in the normal state (i.e., the bulk material) at large 

volumes, but with a gradual decrease in volume until we reach the Bohr exciton radius for that 

material. which ends with a nanoscale grain size close to (2.6 nm) it is found that there is a wide 

variation in energy gap and quantum confinement energy at nanosizes smaller than (10 nm) as 

shown in the figures below. 

 

 

Fig. 2. Energy gap and quantum confinement energy for indium arsenide (InAs)  

as function of particle size at the nanoscale. 

 
 

Fig. 3. Energy gap and quantum confinement energy for indium phosphide (Inp)  

as functions of nanoscale particle size. 
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Figure 2 & 3 indicate, energy gap value is high at tiny sizes. (PS=10nm), then it begins to 

decrease gradually when the particle size of the material exceeds the Bohr radius of the exciton, it 

becomes almost constant, due to quantization of its sizes (quantization of the density of states), 

this arises because the nanoparticle size is comparable to the de Broglie wavelength of its charge 

carriers (i.e., electrons and holes) [19]. On the other hand, we note that the quantum confinement 

energy is inversely proportional to the size of the nanoparticle, and this is shown from the above 

figures, where at large sizes (PS=50nm), we note that the quantum confinement energy is small, 

but does not approach zero, as the lowest possible energy for the quantum dot sample is not equal 

to zero, i.e. the confinement of the ground state of the electrons in (QD) is not zero. This means 

that the electrons in the (QD) are not fixed, but rather have kinetic energy in a manner similar to a 

particle in a box, and on the contrary, it increases when the sizes are as small as (PS=10nm) [20]. 

Now we explain more the change that occurs to the nanoscale energy gap and the quantum 

confinement energy through the following figures: 
 

 
 

Fig. 4. The energy gap of indium arsenide (InAs) as a function of the the quantum confinement energy. 

 

 
 

Fig. 5. The energy gap of indium phosphide (Inp) as a function of the quantum confinement energy. 
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nanovolumes. We notice in the material indium arsenide (InAs) when the confinement energy is 

(3.6ev) the nanoscale energy gap reaches (4.0ev) at a small size (PS = 4nm), but at large sizes (PS 

= 50nm) the quantum confinement energy is very small (0.02ev), and the energy gap (0.4ev) is 
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confinement energy resulting from the change in the particle size. Therefore, whenever the 

quantum confinement energy increases, that is, the quantum confinement of electrons increases. 

This increase leads to the division of the edge of the valence and conduction bands into separate 

and quantitative electronic levels. These electronic levels are similar to those in atoms and 

molecules and thus the value of the energy gap increases [21]. 
 

3.2. Activation Energy of (InAs, Inp) 

In this part, at the beginning, we showed how the activation energy and the quantum 

confinement energy of materials (InAs), (InP) change as a function of nanoparticle size shown in 

the figures below: 

 

 
 

Fig. 6. Activation energy and quantum confinement energy for indium arsenide (InAs) as functions of 

nanoscale particle size. 
 

 

Fig. 7. Activation Energy and quantum confinement energy for indium phosphide (Inp) as functions of 

nanoscale particle size. 
 

 

The figures above show that the values of the activation energy are large at small nano-

sizes, that is, when there is a quantum confinement of the material, that is, when its size 

approaches the Bohr radius of the exciton, this corresponds to an increase in the quantum 

confinement energy, whose value increases as we said earlier at small nano-sizes, since the energy 

gap increases with the increase in the energy of quantum confinement due to the effect of quantum 

confinement of electrons [22], we note that the change in the activation energy with the particle 

size is similar to the change in the energy gap. When we compare the activation energy curve with 

the energy gap curve, we notice a great similarity between them. This is because the activation 

0 5 10 15 20 25 30 35 40 45 50 55 60

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

 Confinement Energy

 Activation Energy

particle size (nm)

C
o

n
fi
n

e
m

e
n

t 
E

n
e

rg
y
 (

e
v
)

0.0

0.5

1.0

1.5

2.0

2.5

 A
c
ti
v
a

ti
o

n
 E

n
e

rg
y
 (

e
v
)

0 5 10 15 20 25 30 35 40 45 50 55 60

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

 Confinement Energy

 Activation Energy

particle size (nm)

C
o

n
fi
n
e
m

e
n

t 
E

n
e

rg
y
 (

e
v
)

0.0

0.5

1.0

1.5

2.0

2.5

 A
c
ti
v
a
ti
o
n
 E

n
e
rg

y
 (

e
v
)



709 

 

 

energy is at the fermi level, which is located in the middle of the energy gap, meaning that the 

activation energy is equal to half of the energy gap [23]. We will now describe the change in the 

activation energy with the change in the quantum confinement energy resulting from the change in 

the nanoparticle size of the same studied materials: 

 
 

Fig. 8. Activation Energy of indium antimonide (InAs) as a function of the quantum confinement energy. 
 

 
 

Fig. 9. Activation Energy of indium phosphide (Inp) as a function of the quantum confinement energy. 
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4. Conclusions 
 

We noticed that the material exhibits a natural behavior similar to its behavior in the 

natural state (i.e. bulk material) at large sizes. But, with a gradual decrease in size until we reach 

the Bohr radius of the exciton, the quantum confinement energy increases, corresponding to an 

increase in the energy gap due to the effect of quantum confinement. We also noticed that the 

activation energy also increases with the energy gap, as the change in the energy gap is similar to 

the change in the activation energy, as the activation energy is located at the Fermi level, which is 

located in the middle of the energy gap, meaning that the activation energy is equal to half of the 

energy gap.  

Quantum confinement energy is small, but does not approach zero, as the lowest possible 

energy for the sample of the quantum dot is not equal to zero, meaning that the confinement of the 

ground state of the electrons in (QD) is not zero. This change in the energy gap and the quantum 

confinement energy with the (QD) size of these materials makes them of great interest in many 

applications in optoelectronics, sensors, optical coatings, and solar cells.   
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