SECOND-ORDER CONNECTIVITY INDEX OF AN INFINITE CLASS OF DENDRIMER NANOSTARS

M.B.AHMADI*, M. SADEGHIMEHR
Department of Mathematics, College of Sciences, Shiraz University

Dendrimer is a polimer molecule with a distinctive structure that resembles the crown of a tree. Dendrimers are key molecules in nanotechnology and can be put to good use e.g. in medicine as carrier molecules for drugs or contrast agents. In this paper we compute 2connectivity index of an infinite family of dendimers.
(Received Septemver 5, 2009; accepted September 28, 2009)
Keywords: Connectivity Index, Dendrimer, Nanostars, Second-order Connectivity

1. Introduction

Molecular connectivity indices are identified as components of the molecular accessibility. The first- and second-order connectivity indices represent molecular accessibility areas and volumes, respectively, whereas higher order indices represent magnitudes in higher dimensional spaces. In identifying accessibility perimeters, we recognized the atom degrees as a measure of the accessibility perimeter of the corresponding atom. The Randić and connectivity indices are identified as the two components of the molecular accessibility area.

Let G be a simple connected graph of order n. The m-connectivity index of an organic molecule whose molecule graph is G is defined as

$$
{ }^{m} \chi(G)=\sum_{i_{1} i_{2} \ldots i_{m+1}} \frac{1}{\sqrt{d_{i_{1}} d_{i_{2}} \ldots d_{i_{m+1}}}}
$$

where $i_{1} i_{2} \ldots i_{m+1}$ runs over all paths of length m in G and d_{i} denotes the degree of the vertex i. In particular, 2-connectivity index is defined as follows:

$$
{ }^{2} \chi(G)=\sum_{i_{1} i_{2} i_{3}} \frac{1}{\sqrt{d_{i_{1}} d_{i_{2}} d_{i_{3}}}}
$$

In this paper, we focus our attention to achieve 2-connectivity index of infinite family of dendrimers .
Consider the modecular graph dendrimer $D[n]$, where n is steps of growth in the type of dendrimer [fig. 1].

[^0]
fig 1: structures of the dendrimers used in this study

2. Main results and discussion

Define $d_{i j k}$ as a number of 2-edges paths with 3 vertices of degree i, j and k respectively. Also $d_{i j k}^{(n)}$ means $d_{i j k}$ for $n^{t h}$ stage. It is clear that $d_{i j k}^{(n)}=d_{k j i}^{(n)}$.
It is obvious that, in $D[1]$,

$$
\begin{equation*}
d_{141}^{(1)}=6, d_{i j k}^{(1)}=0, i j k \neq 141 . \tag{1}
\end{equation*}
$$

Thus

$$
{ }^{2} \chi(D[1])=\frac{6}{\sqrt{1 \times 4 \times 1}}=3
$$

In $D[2]$, we have

$$
\begin{align*}
& d_{131}^{(2)}=4, d_{134}^{(2)}=8, d_{343}^{(2)}=6 \tag{2}\\
& d_{i j k}^{(2)}=0, \quad i j k \neq\{131,134,343\}, \tag{3}
\end{align*}
$$

Therefore

$$
{ }^{2} \chi(D[2])=\frac{4}{\sqrt{1 \times 3 \times 1}}+\frac{8}{\sqrt{1 \times 3 \times 4}}+\frac{6}{\sqrt{3 \times 4 \times 3}}=\frac{8 \sqrt{3}}{3}+1=5.618802 \quad(6 D) .
$$

For $n=3$ and $n=4$, we have

$$
\begin{align*}
& p_{i j k}^{(3)}=\left\{\begin{array}{cc}
8 & i j k=131 \\
16 & i j k=133 \\
4 & i j k=333 \\
8 & i j k=334 \\
6 & \text { ijk }=343 \\
0 & \text { otherwise }
\end{array}\right. \tag{4}\\
& p_{i j k}{ }^{(4)}=\left\{\begin{array}{cc}
16 & \text { ijk }=131 \\
32 & i j k=133 \\
28 & i j k=333 \\
8 & \text { ijk }=334 \\
6 & \text { ijk }=343 \\
0 & \text { otherwise }
\end{array}\right. \tag{5}
\end{align*}
$$

In $D[n]$, for $n \geq 3$, the value of $p_{334}^{(n)}$ and $p_{343}^{(n)}$ are constants, and $p_{334}^{(n)}=8, p_{343}^{(n)}=6$. Thus we have

$$
\begin{equation*}
\frac{p_{334}^{(n)}}{\sqrt{3 \times 3 \times 4}}+\frac{p_{343}^{(n)}}{\sqrt{3 \times 4 \times 3}}=\frac{8}{6}+1=\frac{7}{3}, n \geq 3 \tag{6}
\end{equation*}
$$

From (4) and (6), we obtain

$$
{ }^{2} \chi(D[3])=\frac{8}{\sqrt{1 \times 3 \times 1}}+\frac{16}{\sqrt{1 \times 3 \times 3}}+\frac{4}{\sqrt{3 \times 3 \times 3}}+\frac{7}{3}=\frac{28 \sqrt{3}}{9}+\frac{23}{3}=13.055269 \quad(6 D) .
$$

A simple calculation shows that for $n \geq 4$

$$
p_{i j k}{ }^{(n)}=\left\{\begin{array}{cc}
2^{n} & i j k=131 \tag{7}\\
2^{n+1} & i j k=133 \\
\sum_{i=2}^{n} 2^{i} & i j k=333 \\
8 & i j k=334 \\
6 & i j k=343 \\
0 & \text { otherwise }
\end{array}\right.
$$

Theorem 1 : The 2-conneciviy index of $D[n]$ is computed as follows:

$$
{ }^{2} \chi(D[n])=1.628917 \times 2^{n}+1.563533 \text { for } n \geq 4
$$

Proof: At first, by induction we show that

$$
\begin{equation*}
{ }^{2} \chi(D[n])=\frac{2^{n}}{\sqrt{1 \times 3 \times 1}}+\frac{2^{n+1}}{\sqrt{1 \times 3 \times 3}}+\frac{\sum_{i=2}^{n} 2^{i}}{\sqrt{3 \times 3 \times 3}}+\frac{7}{3} \quad \text { for } n \geq 4 . \tag{8}
\end{equation*}
$$

For $n=4$ from (5) we have

$$
\begin{aligned}
{ }^{2} \chi(D[4]) & =\frac{16}{\sqrt{1 \times 3 \times 1}}+\frac{32}{\sqrt{1 \times 3 \times 3}}+\frac{28}{\sqrt{3 \times 3 \times 3}}+\frac{7}{3} \\
& =\frac{2^{4}}{\sqrt{1 \times 3 \times 1}}+\frac{2^{5}}{\sqrt{1 \times 3 \times 3}}+\frac{2^{2}+2^{3}+2^{4}}{\sqrt{3 \times 3 \times 3}}+\frac{7}{3} .
\end{aligned}
$$

Thus for $n=4$, relation (8) is true. Now suppose (8) is true for $n=k$, i.e.,

$$
{ }^{2} \chi(D[k])=\frac{2^{k}}{\sqrt{1 \times 3 \times 1}}+\frac{2^{k+1}}{\sqrt{1 \times 3 \times 3}}+\frac{\sum_{i=2}^{k} 2^{i}}{\sqrt{3 \times 3 \times 3}}+\frac{7}{3} .
$$

We show that (8) is true for $n=k+1$.
According to the structure of $D[n]$, in stage $k(k \geq 4)$, we have $p_{131}^{(k)}=2^{k}, p_{133}^{(k)}=2^{k+1}$ and $p_{333}^{(k)}=\sum_{i=2}^{k} 2^{i}$, and in stage $k+1, p_{131}^{(k+1)}=2^{k+1}, p_{133}^{(k+1)}=2^{k+2}$. Also the nodes with degree 1 in stage k have degree 3 in stage $k+1$, therefore

$$
p_{333}^{(k+1)}=p_{333}^{(k)}+2^{k+1}=\sum_{i=2}^{k} 2^{i}+2^{k+1}=\sum_{i=2}^{k+1} 2^{i} .
$$

Thus

$$
{ }^{2} \chi(D[k+1])=\frac{2^{k+1}}{\sqrt{1 \times 3 \times 1}}+\frac{2^{k+2}}{\sqrt{1 \times 3 \times 3}}+\frac{\sum_{i=2}^{k+1} 2^{i}}{\sqrt{3 \times 3 \times 3}}+\frac{7}{3} .
$$

Therefore (8) is true for $n=k+1$.
Since $\sum_{i=2}^{n} 2^{i}=2^{n+1}-4$, we can simplify (8) as follows:

$$
\begin{gathered}
{ }^{2} \chi(D[n])=\frac{2^{n}}{\sqrt{3}}+\frac{2^{n+1}}{3}+\frac{2^{n+1}-4}{3 \sqrt{3}}+\frac{7}{3} \\
=\frac{2^{n}(5+2 \sqrt{3})+7 \sqrt{3}-4}{3 \sqrt{3}}
\end{gathered}
$$

$$
=1.628917 \times 2^{n}+1.563533
$$

The proof is now complete.
We can summarize the given results for 2-connectivity index of $D[n]$ as follows:

$$
{ }^{2} \chi(D[n])=\left\{\begin{array}{cc}
3 & n=1 \\
5.618802 & n=2 \\
13.055269 & n=3 \\
1.628917 \times 2^{n}+1.563533 & n \geq 4
\end{array}\right.
$$

In table 1 , the 2 -connectivity index of $D[n]$ is computed for $n=1, \ldots, 15$.

N	The Number of Vertices	2-connectivity Index
1	5	3
2	13	5.618802
3	29	13.055269
4	61	27.626207
5	125	53.688881
6	253	105.814229
7	509	210.064924
8	1021	418.566316
9	2045	835.569098
10	4093	3369.574664
11	8189	6673.685795056
12	16381	13345.652580
13	32765	26689.741627
14	65533	53377.919721
15	131069	

References

[1] Hendrik Timmerman, Todeschini Roberto, Viviana Consonni, Raimund Mannhold, Hugo Kubinyi, Handbook of Molecular Descriptors, Weinheim: Wiley-VCH (2002)
[2] Ali Reza Ashrafi, Parisa Nikzad, Digest Journal of Nanomaterials and Biostructures 4(2), 269 (2009).
[3] M..Ghorbani, M. Jalali, Iranian journal of mathematical sciences and informatics, 2(2),17 (2007).
[4] L. Pavlovi'c, I. Gutman, Novi Sad J. Math. 31(2), 532 (2001).
[5] X. Li, I. Gutman, Mathematical Chemistry Monographs, 1, 330 (2006).
[6] M. Aouchiche and P. Hansen, Discrete Mathematics, 307 (2), 262 (2007).
[7] G. R. Newkome, Moorefield C N \& Vogtlen F, Dendrimers and Dendrons. Concepts, Syntheses, Applications (Wiley-VCH Verlag GmbH \& Co. KGaA) (2002).
[8] A. R. Ashrafi, Mirzargar M., Indian J. Chem., 47A(4), 535 (2008).
[9] H. Yousefi-Azari, A. R. Ashrafi, M. H. Khalifeh, Digest Journal of Nanomaterials and Biostructures, 3(4), 315 (2008).
[10] M. H. Khalifeh, H. Yousefi-Azari, A. R. Ashrafi, Digest Journal of Nanomaterials and Biostructures, 4(1), 63 (2009).
[11] S. Yousefi, A. R. Ashrafi, MATCH Commun. Math. Comput. Chem., 56, 169 (2006).
[12] S. Yousefi, A. R. Ashrafi, J. Math. Chem., 42, 1031 (2007).
[13] S. Yousefi, A. R. Ashrafi, Current Nanoscience, 4, 161 (2008).
[14] Randic, M., J. Am. Chem. Soc., 97, 6609 (1975).

[^0]: *Corresponding author: mbahmadi.shirazu.ac.ir

