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The hyper Wiener index of a molecular graph is defined as one half of the sum of the 
distances and square distances between all (ordered) pairs of vertices of the graph. In this 
paper we obtain an exact formula for calculation the hyper Wiener index of nanotorus 
which have square and octagon structure and denoted by   nanotorus. )(84 SCC
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1. Introduction 
 
A topological index is a real number related to a structural graph of a molecule. It does not 

depend on the labeling or pictorial representation of a graph. Topological indices are one of the 
descriptors of molecules that play an important role in structure property and structure activity 
studies, particularly when multivariate regression analysis, artificial neural networks, and pattern 
recognition are used as statistical tools. One of the topics of continuing interest in structure-
property studies is to arrive at simple correlations between the selected properties and the 
molecular structure [3, 16]. The hyper Wiener index is one of the recently conceived distance-
based graph invariants, used as a structure-descriptor for predicting physicochemical properties of 
organic compounds. This topological index was introduced by Randi'c and has been extensively 
studied [10, 13]. 

Let  be a connected graph, the set of vertices and edges of will be denoted by V(G) and 
E(G), respectively. If e is an edge of G connecting the vertices i and j of G, then we write e = ij. 
The distance between a pair of vertices i and j of G is denoted by d(i , j). The hyper Wiener index 
of the graph G is the half sum of distances and square distances over all its vertex pairs (i , j): 
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Recently computing topological indices of nano structures have been the object of many papers [6-
9]. In a series of papers, Ashrafi and coauthors [1, 2] and [14-15] studied the topological indices of 
some chemical graphs related to nanotorus. The hyper Wiener index of graphs with different 
structure may be obtained by various methods [4,5] and [11,12]. In this paper we compute this 
topological index by calculation summation of distance and square distance between a vertex and 
vertices which placed in a row of the graph. In [1] Ashrafi  and coauthor compute the wiener index 
of  C4C8(S) nanotorus. To  



550 
 

 
Fig. 1. AC4C8(S) Nanotorus (a) Side view (b) Top view. 

 
 
compute the hyper Wiener index of this graph we need to Wiener index of the graph so we 
compute the Wiener index of graph by a simple method. 
 
 

2. Main results 
 
In this section we derive an exact formula for the hyper Wiener index of graph C4C8(S) 

nanotorus. For this purpose first we choose a coordinate label for vertices of this graph as shown in 
Figure 2. Let the graph has q rows and p columns of vertices ( q and p are positive even integer ). 
Therefore the graph of nanotorus can be  denoted the by T(p, q). To compute WW(G), at first the 
summation of distance between all of the pair vertices of the graph, ∑

⊆ )(},{
),((

GVji
jid , most be 

computed. 
For this purpose we consider vertices x0p and y0p in the first row of the graph and obtain 

summation of  distances between these two  vertices and other vertices of the graph. The obtained 
results in this computations can be used for calculation summation of distances between each two 
vertices xtp and ytp (for t=1,2,…,q-1) and other vertices of the graph other by symmetry of the 
graph. Let dx(k) denotes the summation of distances between vertex x0p and all of the vertices 
placed in kth row of the graph. Thus 
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Similarly we de_ne dy(k) as follows: 
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Fig. 2. A C4C8 (S) Lattice with p=4 and q=6. 
 
In Lemma 3 of Ref [6] we compute dx(k) and dy(k) as follows: 
 

Lemma 1. Let 
2

0 qk <≤ , then 

⎪⎩

⎪
⎨
⎧

>++

≤+++
=

.24
2

2)(22
)( 2

22

pkifpkpp
pkifkkkpp

kd x  

and 

⎪⎩

⎪
⎨
⎧

>−+

≤−++
=

.24
2

2)(22
)( 2

22

pkifpkpp
pkifkkkpp

kd y  

 
Now we can compute quantity of expression ∑

⊆ )(},{
),((

GVji
jid  for graph of G = C4C8(S) nanotorus 

which is equal to Wiener index of this graph. Let pq ≤ , by usingof  Lemma 1 we have 
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The last result which obtained for vertex x0p  can be used for all of the vertices of graphs. Therefore 
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Now suppose q>p. Thus 



552 
 

.)
3
42(2

3
4

))(244())(244()
3
24(

6

)()()()(),(

22
3

2

1

22
1

2

1

2222
3

1

2

1

1
2

10)(
0

ppqpp

kkkppkkkppqppqq

kdkdkdkdxid

q

pk

q

pk

p

k

q

pk
y

q

pk
xy

p

k
x

GVi
p

−++=

−+++++++−++=

+++=

∑∑

∑ ∑∑∑∑

+=

−

+=

= +=

−

+==∈

 

 
So in this case the Wiener index of the graph ,W(G), computed as follows: 
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In continue of this section we compute the summation of square distance between all of the pairs 
vertices, ,of the graph C4C8(S) nanotorus. At first we compute the summation of 

square distances between a vertex of graph and vertices of graph placed in k rows which placed 
bellow of this vertex (see figure 2). Then by suitable summation we can obtain summation of 
distances between a vertex and all of the vertices of the graph. 
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Let xkt and ykt be vertices in the kth row and tth column of the graph for qk <≤1  and pt <≤1 . 
Put 
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In the following Lemma we compute Xkt  in two cases which the vertices are considered below the 
black edges and the vertices are placed on or above the black edges ( see figure 2 ). 

Lemma 2 Let 
2

1 qk <≤  and  and pt <≤1 || tpr −= . If kptkp +<≤+− 1 , then 
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Proof: Let . If k is an odd integer then d(x0p , xkt) =2k+r+1 and d(x0p, ykt) 
=2k+r. Also if k is even, integer d(x0p, xkt) =2k+r and d(x0p , ykt) =2k+r+1 Anyway Xkt computed 
as follow: 

kptkp +<≤+− 1

 
4. - r) 8(2k )r)  1)-(2(k1) r   1)-(2(k ()r) (2k   1) r  (2k ( 2222 +=++++−++++=ktX  

 
Now Suppose t > p + k or t < p < k + 1. For pt ≤  we have d(x0p , xkt)  = 2r+ k+1 and d(x0p , ykt) 
=2r+ k  if r be odd integer. If r be even integer then d(x0p , xkt) = 2r+k and d(x0p,ykt)) = 2r+k+1. 
Therefore 
 

. k) 4(2r )1)-k(2r1)1)-k ((2r())(2k   k) (2r ( 2222 +=++++−+++= rX kt  
 

Now suppose t > p. So d(x0p , ykt)  = 2r + k -1 and d(x0p , xkt)  = 2k + r, if  r be even integer. If r be 
odd  we have d(x0p ,ykt) =2r+k and d(x0p , xkt) =2k+r-1. Therefore  
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4. - k) 4(2r )1)- 1)-(k(2r1)-k (2r()1)-k (2r   k) (2r ( 2222 +=+++−+++=ktX  
This completes the proof.                                                                                                         

 
 

Now we consider vertex y0p instead x0p and derive Similar results. Put 
  

).,(),(),(),( ,10
2

,10
2

0
2

0
2

tkptkpktpktpkt yydxydyydxydY −− −−+=  
By similar argument we can calculate Ykt  with consideration two cases for vertices of the graph. 
 

Lemma 3.  Let 
2

1 qk <≤  and  and  pt <≤1 || tpr −= . If  and 2≥k
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Proof: The proof is similar to that of Lemma  2 . 
 
Now let  denotes the summation of square distances between vertex x0p and all of the 
vertices placed in kth row of the graph. Thus 
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Similarly we define  as follows: )(2 kd y
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In the following Lemma we compute  and  for kth row of the graph. )(2 kd x )(2 kd y

 

Lemma 4.  Let 
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Proof:  Let k=0. Then for vertices },{ 000 ttt yxa ∈  in the first row of the graph, we have 
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By  using Lemma 1 and 2, we have 
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Therefore by using similar argument, in proof of Lemma 2, we have 
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Now let k > p. Then for all of the vertices of the graph we have iptip +≤≤+− 1 . So by using 
Lemma 1, we have 
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This completes the proof.       
 
In two pervious Lemmas we compute the summation of square distances between vertices x0p and 
y0p  and vertices of the graph which placed in  rows bellow of those vertices. By using symmetry 
of graph the obtained results can be used for computation the summation of square distances 
between vertex  xkt  (or ykt ) and vertices of graph placed in  rows bellow of xkt ( or ykt ) 

respectively for 

k

k

2
1 qk <≤  and  pt <≤0 . Also we can use of  these results for computation the 

summation of square distances between vertex xkt  (or ykt ) and vertices of graph placed in  rows 
above of the vertex xkt  (or ykt ). Now we can compute the hyper Wiener index of the graph. 

k

 
Theorem 1. The hyper Wiener index of )(84 SCCG =  nanotorus given by 
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Proof: At First we compute the expression ∑
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The last equation can be used for all of the 4p vertices which placed in kth row of the graph. So 
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Therefore  can be computed by using Lemma 3 as follow: ∑
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The proof is completed by replacing W2, (2) and (3)  in (1).                   
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