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We have performed detailed studies of the lattice dynamics and thermodynamic properties 

of CuAlS2 within the density functional perturbation theory and pseudopotential methods. 

The results for the phonon dispersion curves of CuAlS2 along several high-symmetry lines 

together with the corresponding phonon density of states are given. The thermodynamic 

properties were derived from phonon frequencies calculated within the quasi-harmonic 

approximation. The temperature dependence of various quantities such as the free energy 

F, entropy S, the volume thermal expansion αV, the heat capacity at constant volume CV, 

and the heat capacity at constant pressure CP are computed. Our results are in good 

agreement with available experimental data and other calculations. 
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1. Introduction 

 

The chalcopyrite I-III-VI2 (I=Cu, Ag; III=In, Ga, Al; and VI=S, Se, Te) family crystals 

have been attracting considerable attention as potential materials for employed in photovoltaic 

solar-energy production due to their very high absorption coefficient under sunlight [1,2]. Among 

them, CuAlS2 has been studied for several decades as a promising windows material for solar cells, 

light-emitting diodes, and other applications because it has the widest direct band gap of 3.49 eV 

at 300 K [3]. In addition, a previous photoluminescence (PL) experiment revealed that the exciton 

binding energy of CuAlS2 is 70 meV [4], which is larger than the binding energies of other 

ultraviolet emitting materials such as GaN, ZnS, and ZnO [5]. This implies that CuAlS2 has the 

potential to be a highly efficient ultraviolet emitter at room temperature. 

The thermodynamic properties are one of the most basic properties of any material and 

depend on the lattice dynamical behaviour. The lattice dynamical properties of CuAlS2 have been 

studied for the last four decades by a number of experimental and theoretical methods. 

Experimentally, the Brillouin zone (BZ) center (Γ point) phonon frequencies of CuAlS2 are 

measured mainly by Roman spectroscopy [6-8] and a few by infrared spectroscopy [6,7,9-11]. 

However, measured vibrational properties of CuAlS2 have been limited to the BZ center possibly 

due to experimental difficulties to make large enough single crystals. On the theoretical side, there 

have been a few attempts to calculate the lattice dynamical by first-principles methods. Using 

first-principles density functional theory (DFT) [12,13] and density functional perturbation theory 
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(DFPT) [14,15], Parlak and Eryiğit [16] computed vibrational properties of CuAlS2. Modern 

first-principles calculation techniques of phonon crystal properties based on DFPT formalism have 

proven to be an effective research tool. The results of such investigations are highly reliable and 

have predictive power. Nowadays, first-principles calculations of lattice dynamics of chalcopyrite 

CuInSe2 [17,18], CuGaS2 [19], CuGaSe2 [20], CuInS2 [21] and ZnSnP2 [22] using DFPT have been 

reported. Although the phonon frequencies are calculated by Parlak and Eryiğit, the 

thermodynamic properties of CuAlS2 are not given. 

Several calculations have been performed to study the thermodynamic properties of 

CuAlS2. Verma et al. [23] used the quasi-harmonic Debye model [24] to investigate the 

thermodynamic properties of CuAlS2 including volume expansion coefficient, bulk modulus, 

specific heat and entropy. Although this method has been successfully applied for many years, it 

has limitations in study of anharmonic effects, extreme conditions of temperature and pressure, 

and temperatures close to the melting point [25]. In 2005, Korzun et al. [26] measured the heat 

capacity at constant pressure CP of CuAlS2 and calculated the heat capacity at constant volume CV, 

entropy H and enthalpy S from the experimental results using polynomial curve fitting techniques. 

This method relies on experimental data, and if the measured results are not accurate, the 

calculation results will have a large deviation. 

In this work we will focus on the thermodynamic properties of CuAlS2. Since lattice 

vibration constitutes main contribution to thermodynamic function of materials at finite 

temperatures, detailed information on the phonon spectrum is crucial for understanding the 

thermodynamic properties under finite temperatures. The phonon density of states (PDOS), which 

includes contributions from all phonon over the entire Brillouin zone, is needed for the 

calculations of various thermodynamic functions under the harmonic approximation [27,28], e.g. 

free energy, internal energy, entropy and heat capacity. And thermal expansion behavior can be 

evaluated from free energy versus volume curves by the method based on the quasi-harmonic 

approximation (QHA) [27-29]. 

 

 

2. Computational methods 

 

The first-principles calculations are carried out by using VASP (Vienna ab initio 

Simulation Package) code [30] which is based on the density functional theory [12,13]. The 

ion-electron interaction is described by the projector augmented wave (PAW) method [31], and the 

exchange-correlation functional is treated within the Generalized gradient approximation (GGA) 

[32,33] of PW91 [34]. Herein, the Cu (3d
10

, 4s
1
), Al (3s

2
, 3p

1
), and S (3s

2
, 3p

4
) orbital are treated 

as valence states. The plane-wave cutoff energy for electronic wavefunctions was set at 550 eV. A 

2×2×1 supercell was constructed and relaxed with a 3×3×3 k-point mesh for use in structure and 

lattice dynamics calculations. The iterative process is stopped when all forces acting on each atom 

are relaxed to be less than 10
-4

 eV/Å and the total energy deviation between two consecutive steps 

reach to 10
-6

 eV. 

The phonon dispersion curves and phonon density of state are determined by using density 

functional perturbation theory combined with the PHONOPY code [35]. After phonon calculations, 

finite temperatures thermodynamic properties of CuAlS2 are estimated by the quasi-harmonic 

approximation. In the quasi-harmonic approximation, the Helmholtz free energy is given by 
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                    ( , ) ( ) ( , )vibF V T E V F V T                              (1) 

where E(V) is the static contribution to the internal energy, and  ,vibF V T  represents the 

vibrational contribution to the free energy, and  ,vibF V T  is given by 

                       ,,
, ln 2sinh / 2vib B j q Bj q

F T V k T V k T               (2) 

Here,  ,j q V  is the phonon frequency of the jth phonon mode with wave vector q at 

fixed V, and Bk  is the Boltzmann constant. The PDOS and vibrational free energy were 

calculated at several different cell volumes. For CuAlS2, we have performed a series of 

calculations by changing the lattice constants of the supercells along a-axis and c-axis directions 

independently. 

 

 

3. Results and discussion 

 

3.1 Structural properties 

CuAlS2 has the chalcopyrite structure shown in Fig. 1. The lattice is body centered and the 

space group is dI 24 . The tetragonal unit cell contains four formula units while the primitive cell 

contains two. It may be seen that the structure resembles that of zinc blende when the atoms on Cu 

and Al sites are indistinguishable or when the occupation of these sites by Cu and Al is completely 

random. For CuAlS2, the Cu atom is located at (0, 0, 0), (0, 1/2, 1/4); Al at (0, 0, 1/2), (0, 1/2, 3/4) 

and S at (u, 1/4, 1/8), (-u, 3/4, 1/8), (3/4, u, 7/8), (1/4, -u, 7/8).  

 

 

Fig. 1. Crystal structure of CuAlS2. 

 

 

In general, I-VI and III-VI bond lengths, denoted by dCu-S and dAl-S, respectively, are not 

equal, mentioned substitution results in two different structural deformations. First is characterized 
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by u parameter defined as  2 2 20.25 /Cu S Al Su d d a    , where a is the lattice parameter in x 

and y direction. The second consequence of differing anion-cation bond lengths is a deformation of 

the unit cell along the z axis to a length c which is generally different from 2a. This tetragonal 

distortion is characterized by the quantity c/a.  

 

Table 1. The equilibrium lattice constants (a and c) (in Å), tetragonal distortion (c/a)  

and internal parameter (u) for CuAlS2. 

 

Method  a   c   ac /   u 

Present work (VSSP-GGA)  5.344  10.534  1.971  0.258 

VASP-GGA (Ref. [13])  5.362  10.526  1.963  0.259 

ABINIT-LDA (Ref. [16])  5.239  10.415  1.988  0.255 

WIEN2K-GGA (Ref. [36])  5.329  10.669  2.002  0.255 

Exp. (Ref. [10])  5.335  10.440  1.957  0.255 

Exp. (Ref. [37])  5.334  10.444  1.958  0.275 

Exp. (Ref. [38])  5.334  10.444  1.958  0.268 

 

 

The ground state equilibrium values of lattice constants (a and c), tetragonal distortion (c/a) 

and internal parameter (u) have been calculated by optimizing the total energy using 

first-principles calculations. The calculated values of these parameters are listed in Table 1 along 

with experimental [10,37,38] and calculated values [13,16,36]. Considering that the zero-point 

motion and thermal effects are not taken into account, the calculated lattice constants agree quite 

well with the experimental ones. Our calculations overestimate the equilibrium lattice parameter a 

(c) with the maximal error of 0.17-0.19% (0.86-0.90%) with respect to experimental values, a 

normal agreement by GGA standards. The value of u is slightly higher than the ideal value of 0.25 

for all compounds of A
I
B

III
C

VI
2 chalcopyrite family except AgInS2 and CuInX2 (X=S, Se and Te) 

compounds, and agree well with the experimental value [10]. The optimized results show our 

calculation method is feasible and it is largely sufficient to allow the further study of vibrational 

and thermodynamic properties. 

 

3.2. Phonon dispersion and density of states  

Since the primitive unit cell of the chalcopyrite structure has eight atoms, there are a total 

of 24 modes of vibration. Group-theoretical analysis predicts the following irreducible 

representation for acoustical and optical zone-center modes: 

 

                     Γaco = 1B2+1E,                                      (3) 

 

               Γopt = 1A1+2A2+3B1+3B2+6E.                               (4) 

 

This gives rise 21 optical phonon branches which at the center of the BZ decompose into 

one A1, two A2, three B1, three B2 and six E. All these modes, except the A2, are Raman (R) active, 

whereas only B2 and E modes are infrared (IR) active. Both B2 and E modes belong to vector 
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transforming representation, and inclusion of the long-rang polarization interaction results in 

splitting of these modes into TO and LO components giving nine polar vibrations.  

 

 
Fig. 2. Calculated phonon dispersion curves along symmetry lines in the BZ  

and the corresponding phonon density of states (DOS) for CuAlS2. 

 

 

The results for the phonon dispersion curves of CuAlS2 along several high-symmetry lines 

together with the total and partial phonon densities of states are displayed in Fig. 2. The phonon 

DOS is normalized to the number of phonons with   
0

1g d 


 . As can be seen from Fig. 2, 

the frequency range of atomic vibrations in CuAlS2 is in accord with the typical 50-500 cm
-1

 for 

the A
I
B

III
X2

VI
 and A

II
B

IV
X2

V
 compounds [39]. The vibrational branches have significant dispersion 

except for the six almost flat branches at about 430 cm
-1

 forming a separate narrow band which 

corresponds to the strong peak in the DOS of this crystal. Our calculated zone-center phonon 

frequencies and their symmetry assignments are displayed and compared with Raman [6,7,9,10] 

and infrared [7,8] spectroscopic measurements and other theory values [16] in Table 2. Overall, 

the calculated zone-center phonon frequencies for CuAlS2 are in agreement with experimental data. 

The calculation results of vibrational properties can ensure the accuracy of thermodynamic 

properties. 

 

Table 3. A comparison of calculated phonon frequencies (in cm
-1

) at the Γ point with Raman and infrared 

data as well as with other theory values. Two numbers in a row correspond to LO/TO frequencies. 

 

Mode 
Theory 

Present 

Theory  Experiment 

Ab 

initio
[16]

 

 
IR

[7]
 IR

[8]
 R

[9]
 R

[7] 
R

[10]
 R

[6]
 

A1 R 326 325  ― ― 315 316 314 315 

A2 Silent 313 304  ― ― ― ― ― ― 

 Silent 360 366  ― ― ― ― ― ― 

B1 R 121 115  ― ― 98 102 96 98 

 R 269 263  ― ― 268 269 263 268 

 R 439 448  ― ― 440 443 442 ― 
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Mode 
Theory 

Present 

Theory  Experiment 

Ab 

initio
[16]

 

 
IR

[7]
 IR

[8]
 R

[9]
 R

[7] 
R

[10]
 R

[6]
 

B2 R, IR 126/124 120/119  ―/114 111/105 111/111 ―/114 108/108 112/112 

 R, IR 298/298 296/287  ―/271 285/264 270/270 ―/267 ―/272 278/266 

 R, IR 481/438 495/453  ―/446 500/456 495/456 ―/446 498/446 497/445 

E R, IR 88/88 83/83  77/77 ― 78/78 78/78 76/74 76/76 

 R, IR 151/151 146/146  140/140 ― 150/150 142/142 135/135 ― 

 R, IR 224/224 218/218  217/216 220/208 220/220 220/218 218/218 219/218 

 R, IR 307/298 290/287  266/263 242/228 266/266 267/265 263/261 265/262 

 R, IR 428/427 440/436  ―/432 434/430 420/373 ―/433 ― ― 

 R, IR 478/435 489/446  497/444 496/452 495/444 499/444 496/444 494/445 

 

3.3. Thermodynamic properties 

Based on QHA, we can obtain Helmholtz free energy (F), entropy of vibration (S), and 

specific heat at constant volume (CV) at finite temperature from phonon DOS with various lattice 

volumes (V). Fig. 3 shows the variation of the Helmholtz free energy as a function of the lattice 

volume computed within the QHA with DFPT from 0 to 1000 K by step of 100 K. A lattice 

volume with minimum free energy was determined from fitting curves of the third-order 

Birch-Murnaghan equation of states [40]. Minimum energy points are connected by a red dashed 

line in Fig. 3. As shown in this figure, the lattice volume becomes larger with increase of 

temperature; hence the equilibrium volume changes at each given temperature.  

 

 

Fig. 3. Helmholtz free energy as a function of the lattice volume from 0 to 1000 K at every 100 K. 

Solid lines are F-V fitting curves according to the third-order Burch-Murnaghan equation of states. 

The local minimum of each free energy curve is indicated by a red dashed line. 

 

The volume thermal expansion V  can be indirectly reproduced by QHA without taking 

anharmonicity into account. To have an overall comparison of the thermal expansion, the 

coefficients of volume thermal expansion, defined by  

                          
1 1

V

P V

V P

V T B T


    
    

    
,                          (5) 
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where we have introduced the isothermal bulk modulus  /
T

B V P V    . The temperature 

dependences of the V  are presented in Fig. 4. It is seen that for CuAlS2 the coefficient V  

varies with temperature. At higher temperatures, the temperature dependence of thermal expansion 

coefficients is far weaker. The variation trend is consistent with the experimental results measured 

by Bodnar et al. [41]. Bulk modulus B can be obtained from the F-V fitting curve according to the 

third-order Birch-Murnaghan equation of states as shown in Fig. 5. We find that the bulk modulus 

B is nearly a constant at low temperature, whereas B decreases dramatically with the increment of 

temperature. Roa et al. [42] reported B of (99 ± 3) GPa at 300 K for CuAlS2 using X-ray 

diffraction measurements. Our present calculations underestimated the experimental B. This is, 

however, a general trend for calculation with the GGA. 

 

 

Fig. 4. The volume thermal expansion coefficient as a function of temperature. 

 

 

Fig. 5. The bulk modulus as a function of temperature. 

 

 

The anharmonicity enables us to differentiate the heat capacity at constant volume CV from 

the heat capacity at constant pressure CP. The relation between CV and CP is 

                             2

P V VC C T BVT                                (6) 

and CV is given by 

                   


dg
Tk

h
Tk

nNkC
BB

BV 















  2

csc
2

3 2

2

0

max 
,             (7) 
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where n is the number of atoms per unit cell, N is the number of unit cells,   is the phonon 

frequencies, max  is the largest phonon frequency. Calculated CV and CP, together with the 

experimental and calculated results are presented in Fig. 6. In the low-temperature limit, the 

specific heat exhibits the T
3
 power-law behaviour, and approaches at high temperature the classical 

asymptotic limit of CV=3nkB=100 J/mol K. The heat capacity at constant pressure CP has been 

measured for CuAlS2 in the temperature range from 80 to 300 K by Korzun et al. [26]. From the 

experimental results, Korzun et al. calculated the heat capacity at constant volume CV. Moreover, 

the heat capacity at constant volume in the harmonic approximation CVh has been calculated using 

Debye model by Korzun et al. in the temperature range from 0 to 400 K. The calculated specific 

heat CV and CP of CuInSe2 exhibit reasonable agreement with the experimental and other 

calculated values as shown in Fig. 6. 

 

 

Fig. 6. The comparison between the calculated and experimental specific heat. 

 

In the present study, the vibrational contribution to the entropy S was computed directly 

from phonon frequencies and DOS, obtained with DFPT at equilibrium volume, using the 

formulas  

               


dg
TkTkTk

nNkS
BBB

B 
















 
max

0 2
sinh2ln

2
coth

2
3


.    (8) 

 

As shown in Fig. 7, the entropy S for CuAlS2 calculated using equation (8) is in good 

overall agreement with values calculated using quasi-harmonic Deby model by Verma et al. [23]. 

The entropy for whole investigated interval of temperatures was calculated using the experimental 

results of CP by Korzun et al. [26], defined by
  80

80
C /

T

pT
S S S TdT     . In order to better 

compare with the experimental results, we also calculated the values ΔS. As the temperature 

increases, the present calculations underestimated the experimental ΔS in the temperature range 

from 80 to 300K. At low temperatures from 80 to 110 K, the values ΔS predicted with DFPT are in 

excellent agreement with the experimental values. 
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Fig. 7. The comparison between the calculated and experimental entropy. 

 

4. Conclusions 

 

The structural, vibrational and thermodynamic properties of ternary semiconductor 

CuAlS2 were investigated from first-principles using density functional perturbation theory. Firstly, 

the structural parameters, including the internal coordinates, are relaxed, and excellent agreement 

is achieved with experimental results. The phonon dispersion curves of CuAlS2 along several 

high-symmetry lines together with the total and partial phonon densities of states are calculated. 

All the Raman-active and infrared-active modes (including LO-TO splitting) are identified and 

compared with experiments and previous theoretical calculations. The calculated zone-center 

phonon mode frequencies are in good agreement with infrared, Raman and neutron scattering 

experiments. Finally, the thermodynamic properties including free energy, entropy, heat capacity 

and thermal expansion behavior are determined within the quasi-harmonic approximation based on 

the calculated phonon density of states. The calculated results are in good agreement with the 

experimental data in a wide range of temperature. 
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