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The anti-Kekule number is the smallest number of edges that must be removed from a 
connected graph with a perfect matching so that the graph remains connected, but has no 
perfect matchings. The calculation of this invariant is demonstrated on ladders, cyclic 
ladders and Mobius ladders in this paper by analyzing the structures of their graphs, and it 
is shown that the anti-Kekule numbers of these models are 3 or 4. 
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1. Introduction 
 
Graph theory models have been extensively used as predictors of the properties of 

chemical compounds (see [1] and references within). The concept of perfect matchings 
corresponds to the notion of Kekule structure in chemistry and plays a very important role [2]. For 
example, it is well known that carbon compounds without Kekule structures are unstable. The 
study of Kekule structures of chemical compounds is very important, because they have many 
“hidden treasures” [3] that may explain their physical and chemical properties. Kekule, 
anti-Kekule and related structures are also discussed in terms of the current aromaticity and 
reactivity indices. Kekule is predicted to be aromatic and stable. This prediction is in agreement 
with experimental findings. Anti-Kekule is predicted to be nonaromatic and reactive. The synthesis 
of anti-Kekule has not yet been accomplished, but it seems that its preparation is imminent and 
difficult [4]. 

The anti-Kekule number [5] of a graph is the smallest number of edges that have to be 
removed from a graph in order that it remains connected, but without any Kekule structure (perfect 
matching). Vukicevic and Trinajstic [5] showed that all cata-benzenoids have anti-Kekule number 
either 2 or 3 and both classes are characterized. It was found that the anti-Kekule number of the 
smallest leapfrog fullerenes C60 is equal to 4. Further, Kutnar, Sedlar and Vukicevic [6] proved that 
the anti-Kekule number of all fullerenes is either 3 or 4 and that for each leapfrog fullerene the 
anti-Kekule number can be established by observing finite number of cases not depending on the 
size of the fullerene. Both of them attracted considerable interest in graph theory and chemistry. 
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It is well known [7,8] that ladder graphs are defined as P2×Pn and cyclic ladder graphs 
(prisms) as P2×Cn, where Pn and Cn are the path and the cycle of order n, respectively. For another 
chemical reason, the prism or cyclic ladder graph has been called the Huckel ladder graph. A 
Mobius ladder graph as in Figure 1 just by a physical twist of a cyclic ladder graph. Accordingly, 
several interesting mathematical features including the Kekule number, characteristic polynomial 
and basis number have been discussed [8,9,10]. 

 
The aim of this paper is to analyze the anti-Kekule number of these three models. 
 
 
Main results 
 
All graphs in this paper are simple and connected with a perfect matching, if not explicitly 

stated otherwise. A perfect matching (or Kekule structure) in a graph G is a set M of edges of G 
such that every vertex of G is incident with exactly one edge from M. 

 
An anti-Kekule set of G with Kekule structures is the set S such that G-S is a connected 

graph and it has no Kekule structures. An anti-Kekule set of the smallest cardinality is called a 
minimal anti-Kekule set, and its cardinality is the anti-Kekule number of G and it is denoted by 
ak(G). 
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 Proof. Let C1=u1u2...unu1 and C2=v1v2...vnv1 be two cycles of length n in CLn, see Figure 1. 
It is easy to see that the graph obtained from CLn by deleting any two edges has a Kekule structure, 
and ak(CLn)>2. 
If  is odd, then CLn-{u1u2, u2u3, v2v3} is connected and bipartite with vertex classes V1 and 
V2, where V1={u1, u2, u4, u6, ..., un-1}∪{v2, v4, ..., vn} and V2={u3, u5, ..., un}∪{v1, v3, ..., vn-1}. So, 
CLn-{u1u2, u1v1, unv1} has no Kekule structures and ak(CLn)=3 for odd n. 

3≥n

If  is even, let e1, e2, e3 be any three edges of CLn such that G=CLn-{e1, e2, e3} is connected, 
we will prove that G has a Kekule structure and ak(CLn)>3. 

4≥n

   Case I. e1, e2, e3∈E(C1)∪E(C2). Then u1v1, u2v2, ..., unvn is a Kekule structure of G.  
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 Case II. Exactly two of e1, e2, e3 belong to E(C1)∪E(C2). Without loss of generality, we assume 

that . )()( 213 CECEe ∪∉

(i) e1, e2∈E(C1). We may assume that e1=u1u2 and e2=uiui+1 ( ni ≤≤2 , un+1=u1). 

When i=2,  since G is connected. If 223 vue ≠ 113 vue ≠ , then u2v2v3... vnv1u1unun-1...u3 is a 

Hamilton path of G, see Figure 2(1); Otherwise, 333 vue ≠ , then u2v2v1vnvn-1...v3u3u4...unu1 is a 

Hamilton path of G. So, G has a Kekule structure.  
When i=n, the result holds similarly. 
Now, we consider 2<i<n. Then at most one of u1v1, u2v2, uivi, ui+1vi+1 is e3.  Without loss of 

generality, we assume that , then uiui-1...u2v2v3... vnv1u1unun-1...ui+1 is a Hamilton path 

of G, see Figure 2(2), and G has a Kekule structure. 

22113 , vuvue ≠

(ii) e1, e2∈E(C2). Similarly to (i). 
(iii) e1∈E(C1), e2∈E(C2). We may assume that e1=u1u2 and e2=vivi+1.  
If i=1, then at most one of u1v1, u2v2 is e3, and u1unun-1...u2v2v3vnv1 or u2u3...unu1v1vnvn-1...v2 is a 
Hamilton path of G.  So, G has a Kekule structure. 
If i=2, note that n is even, u2u3, u4u5, ..., unu1, v1v2, v3v4, ..., vn-1vn is a Kekule structure of G. 
If i=n, i.e., e2=vnv1, then G has a Kekule structure similarly to i=2. 
If 2<i<n, then at most one of u1v1, u2v2, uivi, ui+1vi+1 is e3. Without loss of generality, we assume 

that , then vivi-1...v2u2u3...unu1v1vnvn-1...vi+1 is a Hamilton path of G, and G has a 

Kekule structure. 

22113 , vuvue ≠

(iv) e1∈E(C2), e2∈E(C1. Similarly to (iii). 
 
Case III. Exactly one of e1, e2, e3 belong to E(C1)∪E(C2). Without loss of generality, we assume 
that e1=u1u2∈E(C1)∪E(C2). 
If {e2, e3}={u1v1, u2v2}, then u2u3v3v2v1vnvn-1...v4u4u5...unu1 is a Hamilton path of G; Otherwise, we 

may assume that . Then u2u3...unu1v1v2...vn is a Hamilton path of G.  So, G has a 

Kekule structure. 

3211 ,eevu ≠

 

 Case IV.  )()(,, 21321 CECEeee ∪∉ . Then there is ni ≤≤1 such that  since 321 ,, eeevu ii ≠
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G is connected, and ui+1ui+2...unu1...uivivi+1...vnv1v2...vi-1 is a Hamilton path of G.  So, G has a 
Kekule structure. 
Finally, we can see that CLn-{u1v1, u1un, u3v3, u3u4} is connected and has no Kekule structures, and 

. 4 )ak(CLn ≤

Hence, ak(CLn)=4. 

Theorem 2.   
⎩
⎨
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 Proof. Let E0={uivi|i=1, 2, ..., n} be an edge-subset of MLn, see Figure 1. 
It is easy to see that the graph obtained from MLn by deleting any two edges has a Kekule structure, 
and ak(MLn)>2. 
If  is even, then MLn-{u1u2, u1v1, unv1} is connected and bipartite with vertex classes V1 
and V2, where V1={u1, u2, u4,  u6, ...,, un}∪{v1, v3, ..., vn-1} and V2={u3, u5, ..., un-1}∪{v2, v4, ..., 
vn}. So, MLn-{u1u2, u1v1, unv1} has no Kekule structures and ak(MLn)=3 for even n. 

2≥n

   If  is odd, let e1, e2, e3 be three edges of MLn such that G=MLn-{e1, e2, e3} is connected, 
we will prove that G has a Kekule structure and ak(MLn)>3. 

3≥n

 Case I. e1, e2, e3∈E0. Then C0=u1u2...unv1v2...vnu1 is a Hamilton cycle in G, and G has a Kekule 
structure.  

 Case II. Exactly two of e1, e2, e3 belong to E0. Without loss of generality, we assume . 

Then C0-{e3} is a Hamilton path of G, and  G has a Kekule structure.  

03 Ee ∉

 Case III. Exactly one of e1, e2, e3 belongs to E0. Without loss of generality, we assume 

 and e2=u1u2. 032 , Eee ∉

(i) If e3=u2u3, then 221 vue ≠  since G is connected. Note that G1=MLn-{u2, v2} is a ladder and 

, G1-{e1} has a perfect matching M. So, M∪{u2v2} is a Kekule structure of G. 132 , Gee ∉

(ii) If e3=v2v3, then C1=u1v1v2u2u3v3v4u4u5...vn-2vn-1un-1unvnu1 is a Hamilton cycle of MLn-{e2, e3} 
since  is odd, see Figure 3. So, G=MLn-{e1, e2, e3} has a Kekule structure. 3≥n
(iii) If e3=u1vn or e3=unv1, then, similarly to (i)-(ii), we can prove that G also has a Kekule 
structure. 
 

 
(iv) If e3=uiui+1 or e3=vivi+1, 13 −≤≤ ni , let f1=v1v2 and 
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then MLn-{e2, e3, f1, f2} is the disjoint union of two ladders Lr and Ls, where 2≥r ,   and 
r+s=n. So, Lr∪Ls-{e1} has a perfect matching, and G also has a Kekule structure. 

2≥s

Case IV. None of e1, e2, e3 belong to E0. Then E0 is a Kekule structure of G. 
From Cases I-IV, we know ak(MLn)>3 for odd n. 
Finally, we can see that MLn-{u1v1, u1vn, u3v3, u3u4} is connected and has no Kekule structures, 

and . 4 )ak(MLn ≤

Hence, ak(ML_n)=4. 
 
Similarly to Theorems 1 and 2, we can obtain the anti-Kekule number of ladders, its proof is 
omitted here. 

Theorem 3.  
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