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The objective of this study was to obtain nanocomposites based on SWCNTs 
functionalized with carboxyl groups and doxorubicin (DOX) as a chemotherapeutic drug 
through covalent bonds formed by carboxyl groups from SWCNTs and amino groups from 
DOX. The formation of these nanocomposites was proved by using different 
characterization methods like Fourier transform Infrared spectroscopy and X-ray 
photoelectron spectroscopy (XPS). Also thermogravimetrical analysis was employed to 
study the thermal behavior of our nanocomposites. X-ray diffraction and Raman 
spectroscopy revealed that the surface was modified by the covalent bonding of DOX to 
SWCNTs. The in vitro drug release was studied by using UV-VIS Spectroscopy. 
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1. Introduction 
 
Since they were discovered carbon nanotubes (CNTs) have been considered an ideal 

material for a large range of applications due to their unique properties [1]. Carbon nanotubes 
represents a graphitic nanomaterial having high dimensional ratio, lengths from nanometers to 
micrometers and diameters of 0.4 to 2 nm for single-walled carbon nanotubes (SWCNTs) and 2-
100 nm for multi-walled carbon nanotubes (MWCNTs). These structures have wide range of 
properties such as mechanical, electronic, thermal, optical and pharmaceutical [2-6] but the most 
important one is the biomedical application of these materials [7-8].  

The using of CNTs in biomedical and biological applications requires a better solubility in 
aqueous media. This was a major technical barrier that has been broken after the discovery of 
functionalization methods of CNTs [9-10]. 

SWCNTs are widely used in drug delivery systems due to its sp2 hybridization surface and 
its large surface area that can be loaded with a high amount of drugs. Also its internal diameter 
makes SWCNTs a good carrier for drugs that can be encapsulated inside the walls [11-12].  

The chemotherapy is one of the methods in cancer treatment that involves the destruction 
of cancer cells with minimal side effects to healthy tissues [13].  

The anthracycline, doxorubin (DOX), is one of the drugs that are widely used in 
chemotherapy due to its efficacy in fighting a wide range of cancers, particularly in treatment of 
breast cancer [14-15].  

Zhuang Liu [16] et al. described a method of activation of SWCNTs with DOX. First they 
PEGylated SWCNTs and after the pegylation they loaded DOX onto SWCNTs by supramolecular 
π- π stacking. 

The aim of this study is the functionalization of the carboxyl groups from SWCNTs 
surface by covalent bonding with amino groups from DOX, using an activation system based on 1-
(3-Dimethylaminopropyl)-3-ethylcarbodiimide (EDC) and N-Hydroxysuccinimide (NHS) and to 
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release this drug in phosphate buffer solution. These new obtained nanocomposite materials were 
characterized using different techniques like spectroscopic methods (XPS, FTIR, RAMAN and 
UV-VIS), thermogravimetric analysis (TGA), X-Ray diffraction (XRD) and scanning electron 
microscopy (SEM). 

 
2. Materials and methods 
2.1 Materials  
SWCNTs purified  for 48 h and functionalized with carboxyl groups by oxidation were 

obtained as previously described [17] named as SWCNTs-p48h-Ox and were used in the activation 
process with 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide (EDC), and N-Hydroxysuccinimide 
(NHS) purchased from Sigma-Aldrich.  

Doxorubicin (DOX) the antitumor drug was received from Sigma Aldrich and was used 
without any purification or modification.  

PBS (phosphate buffer solution) having pH=5.5 was obtained from 2 solutions. First 
solution contains 13.61 g potassium dihydrogen phosphate diluted in 1000 ml flask containing 
distilled water. Second solution contains 35.81 g disodium hydrogen phosphate diluted in 1000 ml 
flask containing distilled water. To obtain PBS with pH=5.5, 96.4 ml of solution I and 3.6 ml of 
solution II were mixed. 

Dialysis sacks obtained from cellulose having inflated diameter approx. 21 mm and pore 
size 12000 Da MWCO were purchased from Sigma Aldrich. 

 
2.2 Methods 
 
2.2.1 Activation with Doxorubicin of SWCNTs-48h-Ox  
The activation of SWCNTs-p48h-Ox with DOX was done using EDC and NHS. Briefly 

7.5 mg of EDC were dissolved in 5 ml of PBS having pH 5.5. After dissolving 15 mg of SWCNTs 
p48hOx were added. Then 22.5 mg of NHS were added and the mixture was sonicated 30 min at 
room temperature. After 30 min, 7.5 mg of DOX were added and the sonication continued for 
another 90 min at room temperature in the dark. When the sonication was finished the solution was 
filtered and the resulted solution was analyzed at UV-VIS to determine the amount of DOX that 
was covalently bonded to the SWCNTs surface. The resulted nanocomposites were dried at 
vacuum oven for 48h. From the calibration curve and the absorbance of the washing solution it 
results that on the SWCNTs surface approximately 5.72 mg of DOX was covalently bonded 
(figure 1). 

ܱܺܦ െ ሺ%ሻ	ݕ݂݂ܿ݊݁݅ܿ݅݁	݈݃݊݅݀ܽ ൌ 100
	൫ ܹௗܱܺܦ െ ܹܱܺܦ൯

ܹௗܱܺܦ
ൌ 76% 

 
2.2.2 The release of Doxorubicin covalently bonded onto the SWCNTs surface. 
After activation the amount of SWCNT with DOX obtained was dispersed in 5 ml of PBS 

pH=5.5 and it was sonicated for 2 min for a better dispersion. Then the solution was introduced 
into a dialysis sack. The dialysis sack was previously washed with PBS 5.5 to remove all the 
impurities.  

The dialysis sack containing the solution of SWCNTs with DOX and PBS was closed to 
both ends and immersed in a glass which contains 50 ml of PBS 5.5. The glass was introduced in a 
thermostated shaking bath for liquids at 37 ○C and the rotation speed was set to 75 rpm.  

From time to time 3 ml of solution were extracted and analyzed at UV-VIS equipment. 
This volume was replaced with another 3 ml of fresh PBS 5.5.  
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Fig. 1. Reaction of purification, oxidation and activation process of SWCNTs with DOX 

 
2.3 Advanced characterization  
Fourier transform infrared spectroscopy (FTIR) spectra of SWNCTs, purified SWCNTs 

oxidized SWCNTs and activated SWCNTs with DOX were registered on an Bruker Vertex 70 
equipment in 400 ÷ 4000 cm-1 range with 4 cm-1 resolution and 32 scans. The samples were 
analyzed in KBr pellets.  

Raman spectra of the samples were recorded on a DXR Raman Microscope (Thermo 
Scientific) by 532 nm laser line. The 10x objective was used to focus the Raman microscope.  

Thermogravimetry analysis (TGA) of the samples was done on Q500 TA equipment, 
using nitrogen atmosphere from 20 °C to 600 °C with 10 °C/min heating rate.  

The X-ray photoelectron spectroscopy (XPS) spectra were recorded on Thermo Scientific 
K-Alpha equipment, fully integrated, with an aluminum anode monochromatic source. Survey 
scans (0-1350 eV) were performed to identify constitutive elements. 

The X-Ray diffraction measurements have been performed on a BRUKER D8 
ADVANCE type X-ray diffractometer, in focusing geometry, with a vertical theta–theta 
goniometer and horizontal sample carrier. The instrument is equipped with copper target X-ray 
tube with CuKα1 radiation (λCuKα1 = 1.5406 Å) and nickel Kβ filter. Lynx-Eye one-dimensional 
detector ensures a collection rate with two orders of magnitudes higher than that of conventional 
point detectors and very good angular resolutions. The working parameters are 40 kV and 40 mA. 
The 2θ scan range was set to 5–50° with a step size of 0.04° and a resolution of 0.01°. 

UV-Vis absorbance of DOX was measured at λ = 480 nm on a UV-3600 Shimadzu 
equipment provided with a quartz cell having a light path of 10 mm and equipped with a Syringe 
Sipper Type N. 

Scanning electron micrographs were obtained using a Zeiss EVO 50 SEM having LaB6 
cathode with Bruker EDX system. 

 
3. Results and discussion 
 
3.1  XPS Analysis 
 
The XPS analysis was employed to analyze the chemical composition at the surface of 

SWNCTs, purified SWCNTs, oxidized SWCNTs and covalent activated SWCNTs with DOX.  
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 The deconvolution of C1s for SWCNTs-p48h-Ox+DOX presents different shape due to 
the surface modification by transforming O-C=O bonds represents by peak from 288.88 eV, as 
binding energy shift from C-C bonds (4.5 eV) (figure 3. a.) into N-C=O bonds from 288.78 eV, as 
binding energy shift from C-C bonds (4 eV)  (figure 3. b.). This modification is responsible to the 
covalent activation of SWCNTs-p48h-Ox with DOX by forming C-N bonds between C from 
COOH and N from NH2 groups. 
 In table 1 the atomic percentages of elements that were detected in analyzed samples are 
shown. It can be observed the decrease of C 1s atomic percent due to the increase of O 1s after 
oxidation process. Also the presence of F 1s in XPS spectra of SWCNTs can be explained by the 
use of PTFE membranes for filtration process. 
 

Table 1. XPS data for SWCNTs, SWCNTs-p48h, SWCNTs-p48h-Ox, SWCNTs-p48h-Ox+DOX 
 

     Samples 
 

 At % 

SWCNTs 
 

SWCNTs-
p48h 

 

SWCNTs-p48h-Ox 
 

SWCNTs-p48h-
Ox+DOX 

C1s 96.43 96.09 79.91 71.07 
O1s 3.25 3.78 18.97 25.91 

Mo3d 0.32 0.13 0 0 
F1s 0 0 1.12 0.91 
N1s 0 0 0 2.13 

 
3.2 FT-IR Spectroscopy 

 
Fig. 4. FT-IR spectra for 1) SWCNTs, 2) SWCNTs-p48h, 3) SWCNTs-p48h-Ox,  

4) SWCNTs-p48h-Ox+DOX and 5) Doxorubicin 
 

 From FT-IR spectrum representing the SWCNTs-p48h-Ox (curve 3 from Figure 4) it can 
be observed the appearance of two new peaks at 1720 cm-1 and 1639 cm-1 corresponding to C=O 
stretching vibration bonds. Spectrum 4 representing the SWCNTs-p48h-Ox+DOX shows the 
appearance of new peaks responsible to DOX structure that was covalently bonded on SWCNTs. 
The peak from 690 cm-1 represents the deformation vibration of NH bonds and peak form 1210 
cm-1 is corresponding to C-N bonds which are newly formed by the reaction with DOX. The 
spectrum 5 representing DOX presents many peaks that can be seen also in spectrum 4 meaning 
that the DOX structure was not affected during the activation process. Also the appearance of 
these peaks proves the DOX loading on SWNCTs [18]. 
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Fig. 7. XRD patterns for SWCNTs, SWCNTs-p48h, SWCNTs-p48h-Ox and  

SWCNTs-p48h-Ox+DOX 
 

 It was observed that the dimension decreases after purification due to the removal of 
amorphous carbon and Mo3d. This decrease is also presented in SWCNTs-p48hOx dimension due 
to the extreme oxidation condition which removes all the Mo3d quantity. From SWCNTs-
p48hOx+DOX it was observed an increase of the dimension meaning that the surface of the 
nanotubes was successfully covalently functionalized with DOX [21]. These results are related to 
Raman data. 
 

3.6 Ultraviolet visible spectroscopy (UV-VIS) 
Comparing with Cisplatin the DOX is one of the drugs that gives signal in UV-VIS. Using 

the UV-VIS absorbance from 480 nm it was calculated the amount of drug that was released at 
different times [22]. The drug release profile is presented in figure 8. It can be noticed that the 
drug stated to release slowly, after 7 days 7.3% being released. The release stopped after 36 weeks 
when the amount of DOX released was 31 %.  
 This slow release of DOX from SWCNTs can be explained by the impossibility of 
breaking C-N bonds formed during the activation reaction. However, this long time release proves 
that some of the C-N bonds were broken.  

 
Fig. 8. Delivery profile of DOX from SWCNTs-p48hOx+DOX 

 
3.7  Scanning electron microscopy (SEM) 
In order to evaluate the surface modification of SWCNTs after oxidation and activation 

with DOX the obtained nancomposites were examined by SEM (figure 9).   
Figure 9 (a) shows short nanotubes with open end caps due to the higher density of 

functional groups in this area, confirming that the oxidation was successfully realized. In this way 

y = 2.6115ln(x) + 12.532
R² = 0.8366
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