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The theoretical investigation of the vibrational dynamics of two Zr67Ni33 
and Co67Zr33 binary metallic glasses have been studied from model potential 
formalism using three different theoretical models proposed by Hubbard-Beeby 
(HB), Takeno-Goda (TG) and Bhatia-Singh (BS).  Five local field correction 
functions viz. Hartree (H), Taylor (T), Ichimaru-Utsumi (IU), Farid et al. (F) 
and Sarkar et al. (S) are used for the first time in the present investigation to 
study the screening influence on the aforesaid properties.  The pair potential is 
computed in Wills-Harrison (WH) form and used to study the Eigen frequencies 
of longitudinal and transverse phonon modes. The present results of phonon 
dispersion curves of Zr67Ni33 glass is compared with the available MD results at 
different temperature. To explain electron-ion interaction pseudo-alloy-atom 
(PAA) model is applied for the first time instead of Vegard's Law. Further, 
thermodynamic and elastic properties have also been calculated from the elastic 
part of the phonon dispersion curves. Computed yielding of Zr67Ni33 glass is 
found in fair agreement with the available data.                
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1. Introduction 
 
Recently due to the wide range of technological applications, there has been a 

great interest in the various properties of Zr and 3d or 4d transition metals based 
amorphous alloys.  The interest in these materials stems partly from the fact that most of 
the Zr-rich amorphous alloys do not show a tendency to fracture, which makes them 
better starting materials for applications in high-field superconducting magnets than 
brittle crystalline alloys.  Moreover, the thermal stability which gives consistent 
behaviour of these alloys is one of their most important properties. Also the research on 
intertransition metals based binary alloys has followed from the desire to understand the 
mechanisms responsible for their physical and electronic properties.  Examples of 
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significant problems include the conditions under which amorphous or crystalline phases 
form, and the technological origins of negative temperature coefficients of electrical 
resistance. At a basic level all of these properties must be controlled by the electronic 
structure of the valence electrons. Theoretical understanding of these structures has been 
difficult to achieve because of the lack of translational symmetry, both for disordered 
crystalline alloys and amorphous or glassy alloys. The possible application of transition 
metal alloys is in microelectronics or as thin-film coating [1-7].                     

The theoretical calculations of phonon dispersion curves (PDC) of Zr67Ni33 glass 
were studied by Gupta et al. [3] for the first time. They adopted Hubbard-Beeby (HB) [8] 
and Bhatia-Singh (BS) [9, 10] approaches in their study and compared the results with 
MD outcomes of Aihara et al. [1, 2]. They found their results are in good agreement with 
the reported data [1, 2].  Also, Otomo et al. [12] have studied the dynamical structure 
factor as well as collective excitations of this glass using NIS technique.  Recently, Lad 
and Arun Pratap [4] have studied the PDC of five Zr-Ni alloys with model potential 
formalism using Takeno-Goda (TG) [11] and Bhatia-Singh (BS) [9, 10] approaches with 
Wills-Harrison (WH) form of pair potential [13].  Also, they have noted that, their results 
are found to be very close to those derived from MD and to the available experimental 
values [1, 2]. They have fitted the parameter of the potential with the experimental data in 
most of the cases. Very recently Vora et al. [14, 15] reported vibrational dynamics of 
some metallic glasses using model potential formalism. The PDC for Co67Zr33 glass is 
reported first time in the present calculation. The experimental data of this glass is not 
available in the literature. In all these studies, the Vegard's law was used to explain 
electron-ion interaction for binaries. But it is well known that PAA is a more meaningful 
approach to explain such kind of interactions in binary alloys and metallic glasses [14-
17]. Hence, in the present article the PAA model is used to investigate the phonon 
dynamics of  (A : Co, Zr, B : Zr, Ni) binary glassy system. XX BA −1

Due to these facts, the theoretical computations of the vibrational dynamics of 
two metallic glasses viz. Zr67Ni33 and Co67Zr33 have been reported in the present article in 
terms of the two longitudinal and transverse modes at high as well as low values of wave 
vector transfer by employing three different well known approaches i.e. HB, TG and BS. 
The pair potential has been calculated using the Wills-Harrison (WH) [13] form of 
potential with well recognized model potential of Gajjar et al. [14-17]. Five local field 
correction functions viz. Hartree (H) [18], Taylor (T) [19], Ichimaru-Utsumi (IU) [20], 
Farid et al. (F) [21] and Sarkar et al. (S) [22] are used for the first time in the present 
investigation to study the screening influence on the aforesaid properties.  The three 
approaches proposed by Hubbard-Beeby (HB) [8], Takeno-Goda (TG) [11] and Bhatia-
Singh (BS) [9, 10] are used to generate the phonon dispersion curves (PDC). The 
thermodynamic and elastic properties such as longitudinal sound velocity Lυ , transverse 
sound velocity Tυ , isothermal bulk modulus , modulus of rigidity , Poisson’s ratio TB G
σ , Young’s modulus Y , Debye temperature Dθ and low temperature specific heat 
capacity  have also been calculated from the elastic part of the PDC. Finally, a 
comparison is made between preset results and available experimental as well as 
theoretical data. 

VC
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2. Computational Methodology 
 
The fundamental component of the phonon dynamics of metallic glasses is the 

pair potential.  In the present study, the pair potential is computed using Wills-Harrison 
(WH) approach [6, 15], 
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The s-electron contribution to the pair potential  is calculated from the relation 
given by [15], 
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where  is the atomic volume of the one component fluid.  OΩ
 

The energy wave number characteristics appearing in the Equation (2) is written 
as [15] 
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Here ,( )qWB ( )qHε ,  are the bare ion potential, the Hartree dielectric response 
function and the local field correction functions to introduce the exchange and correlation 
effects, respectively.  In the present computation, the ~1.5 is taken and another 
parameters  and  are obtained from the band structure data [13].  
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The well characterized model potential  of Gajjar et al. [14-17] used in the 

present computation is written as, 
( )qWB

 



Vibrational Dynamics of Binary Metallic Glasses 160 

( ) ( )

( ) ( ) ( )

( ) ( )
( )

( ) ( ) ( )

( ) ( ) ( ) ( )
( )

( ) ( )

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+
−

+

⎪
⎪

⎭

⎪
⎪

⎬

⎫

⎪
⎪

⎩

⎪
⎪

⎨

⎧

+
+

+
−

+
+

+
−

+
+

+
−

+
+

+
+−

+

⎪
⎪

⎭

⎪
⎪

⎬

⎫

⎪
⎪

⎩

⎪
⎪

⎨

⎧

+
−

+
+

+
−

+
+

+
+

+
++−

Ω
−=

42

2
2

42

5

42

3

4232

3

3222

3

2223

42

4

42

2

32

4

32

2

22

2

2

2

2

2
0

2

1
11exp24

sin

1
6

1
36

1
6

1
18

1
6

1
3

1
3

1
126

cos

1
24

1
24

1
6

1
18

1
6

1
121

4

U
UU

U

U
U

U
U

U
U

U
U

U
U

U
U

U
U

U
U

UU

U

U
U

U
U

U
U

U
U

U
U

U
U

U

qq
eZqWB ε

π

(4) 
 
Where  with  is the potential parameter.  The detailed information of this 
potential is given in the literature [14-17].  

CqrU = Cr

 
The expressions for longitudinal phonon frequency Lω  and transverse phonon 

frequency Tω  as per Hubbard-Beeby (HB) [8] are,  
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Following to Takeno-Goda (TG) [11], the wave vector  dependent longitudinal 

and transverse phonon frequencies are written as   
( )q
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According to modified Bhatia-Singh (BS) [9, 10], the phonon frequencies of 
longitudinal and transverse branches are give by  

 

( ) ( ) ( )
( )qkq
qrGqkk

II
q
Nq

TF

STFeC
L ε

δβ
ρ

ω 22

222

202
2 2

+
++= ,                       (10) 

 
and 
 

( ) ( )⎟
⎠
⎞

⎜
⎝
⎛ −+= 2002

2

2
12 III

q
Nq C

T δβ
ρ

ω  ,                                       (11) 

 
with  
 

( )
ardr

rdV
rM

a

=
⎥⎦
⎤

⎢⎣
⎡= 1

2

2ρβ  ,                         (12) 

 
and 
 

( )
ardr

rdV
rdr

d
M
a

=
⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛= 1

2

3ρδ .                              (13) 

  
The expressions of and are, with 0I 2I qax = , 
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 Other details of various constants used in Equations (10) and (11) are narrated in 
the literature [9, 10]. Here M , ρ  are the atomic mass and the number density of the 
glassy alloy while  and V  be the first and second derivative of the pair potential.   ( )rV ′ ( )r′′

 
The present study also includes the computation of longitudinal sound velocity 

, transverse sound velocity , isothermal bulk modulus , modulus of rigidity G , 
Poisson’s ratio 

Lυ Tυ TB
σ  and Young’s modulus Y , Debye temperature Dθ  and low temperature 

specific heat C  from the elastic limit of the PDC [15].  V
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with Mρ  is the isotropic number density of the solid.  
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and  
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The Debye temperature is given in terms of both the velocities as [23], 
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here  is the Plank’s constant and  h Dω  be the  Debye frequency.    
 
 The low temperature specific heat  is obtained from Kovalenko and Krasny 
[24], 
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The basic features of temperature dependence of  are determined by the behavior 
of 

( )TCV

( )qλω . 
 

3. Results and discussion 
  
 The input parameters and other related constants used in the present computations 
are narrated in Table 1.  All the input parameters are calculated from the pure metallic 
data of the glassy alloy [10], while rC is computed from the well known equation given 
by Heine and Weaire [25, 26].  The pair potentials, the phonon dispersion curves and the 
low temperature heat capacity of each metallic glass are displayed Figures 1-6.   

 
The computed pair potentials of binary Zr67Ni33 glass are shown in Figure 1. It is 

easily verifiable that the inclusion of exchange and correlation effect in the static Hartree 
dielectric screening changes depth and width of the pair potentials . The first zero 
for  due to all screenings occurs at 3.7 atomic units (au). The  
position is also affected by the nature of the screening.  It is observed that well depth of 
presently computed potentials move towards the left as compared to the potentials of 
Gupta et al. [3].   

( )rV
( 0rrV = )

)

≈0r ( )rVmin

 
The presently computed pair potentials of Co67Zr33 glass are displayed in Figure 

2. It is apparent from the figure that the inclusions of exchange and correlation functions 
affect significantly in the behaviour of the pair potentials. The first zero for  due 
to all local field correction functions occurs at 5.2 au.  The position of  is not 
highly affected by the nature of the screening and the oscillatory nature is also an absent 
at large 

( 0rrV =
( )rVmin≈0r

r -region.   
 
From the Figures 1 and 2, it can be noted that the Coulomb repulsive potential 

part dominates the oscillations due to ion-electron-ion interactions, which show the 
waving shape of the potential after 10 au. Hence, the pair potentials converge towards a 
finite  
value instead of zero in repulsive region.  
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Fig. 1 Pair potentials for Zr67Ni33 Glass. 

 

 
Fig. 2 Pair potentials for Co67Zr33 Glass 
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Table 1 Input Parameters and constants. 
 

Glass Z OΩ  (a.u.) rC  (a.u.) Zd NC rd  (a.u.) 

Zr67Ni33 3.34 129.54 0.6889 4.48 12 2.23 

Co67Zr33 3.33 102.59 0.7701 5.85 12 2.85 

 
Fig.3 Screening influence on phonon dispersion curves of Zr67Ni33 Glass. 



Vibrational Dynamics of Binary Metallic Glasses 166 

 
Fig. 4 Phonon Dispersion Curves for Zr67Ni33 Glass. 

 
The phonon dispersion curves (PDC) of binary Zr67Ni33 glass computed using the 

HB approach with five screening functions and three approaches (HB, TG and BS) with 
S-local field correction function are shown in Figures 3 and 4, respectively.  It is noticed 
from Figure 3 that, the inclusion of exchange and correlation effect suppresses the 
longitudinal as well as transverse phonon branches, in general. The first minimum in the 
longitudinal branch for H, T, IU, F and S-local field correction functions falls at 

2.6Å-1, 2.0Å-1, 2.8Å-1, 2.8Å-1 and 2.9Å-1, respectively.  The screening influence at 
first peak of 

≈q

Lω  with respect to H-screening is 23.11% for T, 48.54% for IU, 49.62% for 
F and 1.86% for S-screening.  Such influence on Tω  due to T, IU, F and S-screening is 
8.87%, 50.68%, 51.72% and 8.77% with respect to H – dielectric function at 1.0Å-1 
point, respectively. It is apparent from the Figure 4 that the oscillations are prominent in 
the longitudinal phonon modes only. The present yielding of PDC due to BS approach 
are higher than those of HB and TG approaches. The first minimum in the longitudinal 
branch occurs at 2.9Å-1 for HB, 1.5Å-1 for TG and 1.6Å-1 for BS approach. 
The first crossover position of 

≈q

≈q ≈q ≈q

Lω and Tω  in the HB, TG and BS approaches is observed 
at 2.2Å-1, 0.8Å-1 and 1.3Å-1, respectively. The MD result of the Aihara et al. [1, 2] at two 
different temperatures 100K and 500K indicates the low and high amorphous states 
respectively, which are also shown in the same figure. It is interesting to note that the 
dispersion curves obtained through BS approach are found in qualitative agreement with 
the MD and theoretical results [1, 2]. Actually here model potential parameter  is Cr
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calculated from the well known formula, which shows significant difference than the 
reported data. 

 
 

     
Fig. 5 Screening influence on phonon dispersion curves of Co67Zr33 Glass. 
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.   Fig. 6  Phonon Dispersion Curves for Co67Zr33 Glass. 

 
The results shown in Figure 5 is the phonon frequencies generated using HB 

approach with the five screening functions for studying the screening influence of 
Co67Zr33 glass. It is seen that the inclusion of exchange and correlation effect raises the 
phonon frequencies in both longitudinal as well as transverse branches. The first 
minimum in the longitudinal branch is around at 1.9Å-1 for H, 2.6Å-1 for T, 

2.5Å-1 for IU as well as F and 2.7Å-1 for S-local field correction function. The 
influence of local field correction functions on 

≈q

L

≈q
≈q ≈q

ω at first peak due to T-dielectric 
function is 309.47%, for IU is 165.85%, for F is 176.63% and for S-screening is 695.93% 
with respect to H-dielectric function. Such screening variation on Tω  at 1.0Å-1 due to 
T, IU, F and S-screening is 242.98%, 128.17%, 137.40% and 539.75%, respectively.  The 
PDC calculated from the HB, TG and BS approaches with S-local field correction 
function are shown in Figure 6 of Co67Zr33 glass.  The first minimum in the longitudinal 
branch falls at 2.7Å-1 for HB, 2.7Å-1 for TG and 1.6Å-1 for BS approach. The 
first crossing position of 

≈q

≈q ≈q ≈q

Lω  and Tω  in the HB, TG and BS approaches is seen at 2.1Å-1, 
2.0Å-1 and 1.4Å-1, respectively. Moreover, the present outcome of PDC due to BS 
approach is higher than those due to HB and TG approaches.  
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It is noticed from Figure 7 that, the vibrational part of the specific heat  is 
also influenced due to the inclusion of exchange and correlation effect for Zr67Ni33 
metallic glass. The high bump is observed in HB and TG approaches while such rise is 
absent in BS approach. Similarly, as shown in Figure 8, the modes of calculating phonon 
frequencies affect the anomalous behaviour of the specific heat (  for Co67Zr33 glass. 
At low temperature region high bump is observed in HB and TG approaches, while linear 
nature is seen in BS approach. The ‘anomalous linear’ nature appears to be predominant 
in disordered materials containing low coordinated atoms.   The computation of  is 
performed up to the elastic limits of the PDC i.e. low coordinated atoms only, which 
produced the ‘anomalous linear’ nature. After the elastic limit of the PDC atoms are 
highly oscillated, most probably which affected the nature of the .           

( VC

VC

)

)VC

VC
 

 
Fig. 7 The Vibrational Part of the Specific Heat (CV) of Zr67Ni33 Glass. 
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The longitudinal as well as transverse sound velocities have been estimated from 
the linear part of the curves. The thermodynamic and elastic properties are calculated 
using both the sound velocities. All the computed results alongwith available theoretical 
data [1, 3] are listed in Table 2 for Zr67Ni33 metallic glass.  The velocities and Dθ  due to 
BS approach are closer to those of other data [1, 3], while another computed parameters 
show qualitative agreement with the reported one [1, 3].  

 
Table 2. Thermodynamic and Elastic properties of Zr67Ni33 metallic glass. 

App. SCR 
Lυ  x 

105 

cm/sec 

Tυ  x 
105 

cm/sec 

TB  x 
1011 

dyne/cm2 

G  x 
1011 

dyne/cm2 
σ  

Y  x 
1011 

dyne/cm2 
Dθ  

(K) 

H 1.7890 1.0329 1.2466 0.7480 0.2499 1.8699 127.87 
T 1.8080 1.0438 1.2732 0.7639 0.2500 1.9099 129.23 
IU 0.8688 0.5016 0.2940 0.1764 0.2500 0.4410 62.10 
F 0.8507 0.4911 0.2819 0.1691 0.2500 0.4228 60.80 

HB 

S 1.5912 0.9187 0.9862 0.5917 0.2499 1.4793 113.73 
H 2.4117 1.3652 2.3357 1.3067 0.2642 3.3041 169.30 
T 2.8000 1.6136 3.0626 1.8256 0.2514 4.5689 199.80 
IU 2.7245 1.7035 2.4913 2.0347 0.1790 4.7979 209.26 
F 2.7767 1.7484 2.5479 2.1433 0.1715 5.0217 214.60 

TG 

S 2.4025 1.4765 2.0089 1.5284 0.1966 3.6576 181.70 
H 7.1769 3.4442 25.0234 8.3169 0.3504 22.4621 431.84 
T 7.2984 3.5679 25.4458 8.9254 0.3430 23.9732 446.91 
IU 7.2508 3.5201 25.2777 8.6874 0.3458 23.3835 441.08 
F 7.2261 3.5027 25.1404 8.6017 0.3464 23.1634 438.94 

BS 

S 7.3643 3.6236 25.7486 9.2059 0.3403 24.6768 453.72 

Others  
[1, 3] 

5.00 
4.19 
4.75 

2.50 
2.05 
1.95 

1.176 
0.846 – – – 

311  
256 

254 ± 
11 

372.53 
 

The longitudinal and transverse sound velocities have been calculated and 
reported for Co67Zr33 glass in Table 3. It can be noted from the Table 3 that, all the 
properties calculated from the HB approach show minimum value, while those from the 
BS approach show higher values. Here, also the obtained yielding are more affected by 
the various screening function used in the present study as well as the approach adopted 
for generating PDC.  
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Table 3.Thermodynamic and Elastic properties of Co67Zr33 metallic glass. 
 
 

App. SCR 
Lυ  x 

105 

cm/sec 

Tυ  x 
105 

cm/sec 

TB  x 
1011 

dyne/cm2 

G  x 
1011 

dyne/cm2 
σ  

Y  x 
1011 

dyne/cm2 
Dθ  

(K) 

H 1.1669 0.6737 0.5780 0.3468 0.2500 0.8670 90.10 
T 3.5528 2.0512 5.3575 3.2145 0.2500 8.0363 274.31 
IU 2.3897 1.3797 2.4239 1.4543 0.2499 3.6358 184.50 
F 2.4865 1.4356 2.6242 1.5745 0.2499 3.9363 191.98 

HB 

S 6.5233 3.7662 18.0616 10.8370 0.2500 27.0924 503.65 
H 1.8757 1.0760 1.5086 0.8845 0.2548 2.2198 143.97 
T 4.0862 2.2450 7.6226 3.8505 0.2838 9.8867 301.44 
IU 3.0537 1.6901 4.2147 2.1824 0.2792 5.5834 226.81 
F 3.1567 1.7491 4.4964 2.3375 0.2785 5.9768 234.71 

TG 

S 6.8947 3.6996 22.3757 10.4569 0.2978 27.1425 497.63 
H 19.5280 11.9359 146.2232 108.8443 0.2018 261.6191 1587.56
T 19.4162 11.8532 144.9000 107.3417 0.2030 258.2537 1576.75
IU 19.4198 11.8601 144.8411 107.4662 0.2026 258.4731 1577.61
F 19.4326 11.8688 145.0086 107.6246 0.2025 258.8377 1578.76

BS 

S 19.3982 11.8373 144.7480 107.0543 0.2033 257.6454 1574.71
 

 
 
In all the three approximations, it is very difficult to judge that which 

approximation is the best for computations of vibrational dynamics of both metallic 
glasses, because each has his own identity.  The HB approach is simplest and old one, 
which generating consistent results of the phonon data, because the HB approximation 
needs minimum number of parameters. While TG approach is developed upon the quasi-
crystalline approximation in which effective force constant depends upon the correlation 
function for the displacement of atoms and correlation function of displacement itself 
depends on the phonon frequencies. The BS approach is retained the interatomic 
interactions effective between the first nearest neighbours only hence, the disorderness of 
the atoms in the formation of metallic glasses is more which show deviation in magnitude 
of the PDC as well as their related properties.    
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Fig. 8 The Vibrational Part of the Specific Heat (CV) of Co67Zr33 Glass. 

 
The dielectric function plays an important role in the evaluation of potential due 

to the screening of the electron gas. For this purpose in the present investigations the 
local filed correction function due to H, T, IU, F and S are used.  Reason for selecting 
these functions is that H – function does not include exchange and correlation effect and 
represents only static dielectric function, while T-function cover the overall features of 
the various local field correction functions proposed before 1972. The IU, F and S 
functions are recent one among the existing functions and not exploited rigorously in 
such study. This helps us to study the relative effects of exchange and correlation in the 
aforesaid properties.  Hence, the five different local field correction functions show 
variations up to an order of magnitude in the Figures 1-8.      

 
4. Conclusions 

 
Lastly it is conclude that, the study of phonon dynamics of both metallic glasses 

have not been investigated theoretically using the IU, F and S-local field correction 
functions previously. The comparison of present results of Co67Zr33 glass is not made due 
to non-availability of theoretical or experimental data. But the present study is very useful 
to provide important set of the phonon data of Co67Zr33 glass. These studies also confirm 
the applicability of the model potential in the aforesaid properties. Such study on phonon 
dynamics of other binary and ternary liquid alloys and metallic glasses is in progress, 
which will be communicated in near future.  
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