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The study of bonding arrangements and glassy nature of the chalcogenide alloys 
help us to detect the material’s utility in particular technological application. The 
vitreous and glassy nature of the alloy is confirmed through XRD and DSC 
respectively. The glass so formed exhibit high value of Tg and thermal stability. 
The bond arrangements are studied by using far infrared spectra of the material 
and explained on the basis of CONM bond approach. With the varying Ge content 
the rigidity and cross-linking increases in the glassy matrix. The rising Tg is due to 
the increase in Ge-Se bonds which is also evident from our far-infrared results. 
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1. Introduction 
 
The group VI chalcogen elements (S,Se,Te) of periodic table form a wide range of alloys 

and compounds, which exhibit their own remarkable  role in material science and technological 
applications. Among amorphous semiconductors, chalcogenide glasses have received major 
attention in recent years for applications in microphotonic devices due to their unique properties 
such as high infrared transparency, photosensitivity and large optical nonlinearity [1]. Amorphous 
chalcogenides are covalent semiconductors having indirect bandgap that can be tuned from visible 
to infrared region [2]. In order to tune the band gap from visible to IR, we can replace S by Se in 
chalcogenide glasses. The addition of Ge to chalcogenide glasses produces a more 3-D glass 
network that increases glass transition temperature (Tg) [1,3]. 

An understanding of the structure of an amorphous material is essential to understand its 
physical properties. In the chalcogenide glasses a great attention has been focused on Ge-Se 
glasses due to their interesting physical properties such as glass formation ability and rigidity. The 
variation in optical and electrical properties of chalcogenide glasses is mostly related to their 
structural behavior. So, it becomes essential for us to understand the details of short-range 
structural order of chalcogenide glasses in order to explore structure-properties correlations [4]. 

The structure of germanium selenides has been studied by many authors using Raman and 
FTIR spectroscopy. The discovery of Carrier Type Reversal in Ge-Se-Pb type glasses has led to 
extensive research on these materials and role of substituents in these glasses. The Raman and 
FTIR investigations of stoichiometric GeSe2 are reported by Lucovsky et al. [5] and Wang et 
al. [6]. There are many more reviewers who have worked on the structure of GexSe1-x glasses [7,8]. 
The role of Pb modifier in the form of n type conduction in Se-Ge glasses were pointed by Tohge 
et al.  [9] The effect of chemical bonding on the physical properties of Se-Ge system has been 
investigated by Fouad et al.[10]. The additives such as Sn and Pb to the material improve the phase 
change characteristics and device performance as evidenced from the literature [11-14]. The 
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3. Results and discussions 
3.1 Justification of glassy nature and basic thermal parameters:   
 
In chalcogenide alloys it is important to know the amorphous and glassy nature of the 

material. The glassy nature of the material is confirmed by DSC analysis. The variation of glass 
transition temperature, crystallization temperature and melting point with the addition of Ge 
concentration has been studied by  

 
Table 3.1 Glass Transition Temperature, Peak Crystallization Temperature, Melting Temperature and 

thermal stability parameters of Sn8Se74Pb18-xGex(x = 7,8,9,10,11). 
 

 
 
 
x 

Temperatures (oC) 
 

 
 
Hurby 
Paramete
r 
Hr 

 
 
Stability 
Paramete
r      (Tc-
Tg) 

 
Mean 
Bond 
Energy<E
> 
Kcal/mol 
(Theoretic
al) 

Glass 
Transitio
n 
Tg 

Peak 
Crystallizatio
n 
Tp 

Meltin
g 
Tm 

Reduced 
Glass 
Transitio
n Trg 

7 135.36 262.19 425.08 0.585 0.779 126.83 49.13 
8 141.68 268.69 438.95 0.583 0.746 127.01 49.69 
9 143.32 272.76 440.52 0.584 0.772 129.44 50.87 
10 146.30 276.60 442.41 0.587 0.786 130.30 51.74 
11 159.14 281.46 450.31 0.598 0.724 122.32 52.62 
 
comparing the DSC thermo grams of all samples at same heating rate of 10 K minute-1 fig.3.2 and 
table 3.1 shows the DSC thermo grams and the values of  glass transition temperature (Tg), peak 

crystallization temperature (Tp), thermal stability, Hurby parameters ሺݎܪ ൌ ೘்ି ೎்

೎்ି ೒்
ሻ for Sn8Se74Pb18-

xGex(x=7,8,9,10,11) glassy materials respectively. It has been suggested by many researchers that 
the temperature difference ∆T=Tc –Tg is a good indication of thermal stability. A higher difference 
in the value of	∆T indicates a good thermal stability. Compositional analysis using DSC has shown 
that with the addition of Ge to Sn-Se-Pb glasses the thermal stability has improved.  Glass forming 
ability (Trg=Tg/Tm) [15] of glassy material is the ease with which melt can be cooled escaping the 
nucleation [16].  This may be due to the increase in the effective bond energy (Ge-Se have larger 
bond energy than Se-Pb) of the system which increases with the increased degree of cross linking 
and considerable strengthing of network structure with the increase in Ge at. %. The Tg is a 
dependant variable of mean bond energy <E > given by Tichy and Ticha and of Hs according to 
Lanhkhost, as theoretical mean bond energy, heat of atomization increases with addition of Ge in 
material. This has also been reported earlier in our previous work of theoretical study of physical 
parameters [17].   
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Fig.3.2. DSC thermograms of the samples and variation of the Tg with Ge concentration. 

 
3.2 Bond energy and relative bond formation probabilities 
The addition of Ge in the Sn-Se-Pb system plays a key role in deciding the structural 

properties of the material. According to CONM model the probabilities of heteropolar bonds 
formation are greater as compared to homopolar bonds. These hetropolar bonds are formed in 
order of their decreasing bond energy as is evident from the bond probability calculations. The 
bond energy of heteropolar bonds can be calculated by the method suggested by Pauling using the 
bond energy of homopolar bonds and the electronegativity of the atoms involved .Bond energies of 
heteronuclear bonds are given by  

 
D(A-B) = [D(A-A) D(B-B)] ½ + 30 (χA –χB)2                                                                      (1) 

 
Where D(A-B) = bond energy of heteronuclear bond, D(A-A) and D(B-B) are the bond energies of 
homonuclear bonds. χA and χB are the electronegativity values of A and B respectively. The 
electronegativities for Se, Ge, Sn and Pb according to pauling scale are 2.55, 2.01, 1.96 and 2.33 
respectively [18-19]. The bond energies of the homopolar and heteropolar bonds and relative 
probabilities of different bonds are given in Table 3.1(a).Probabilities are calculated by using the 
probability function eD/kBT at room temperature as well as at 980oC, which is sample preparation 
temperature, where D is the bond energy, kB is the Boltzmann constant and T is temperature [20].  
 

Table 3.2 Bond energies and relative probabilities of bonds formation of possible bonds in material. 
 

Bond  Bond 
Energy K 
cal /mol 

Rel. Bond Probability         
 
at 298.15K   at 

1253.15K
Se‐Ge   49.41  1  1 

Se‐Sn  49.23  7.4x10-1 9.3x10‐1 

Se‐Se  44.00  1.1x10‐4  1.1x10‐1 

Ge‐
Ge  37.60  2.2x10-9  8.7x10‐3 

Se‐Pb  31.47  7.1x10-14  7.5x10‐4 

Pb‐Pb          20.48   6.3x10-22 9.02x10-6
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3.3 Infrared spectroscopy 
3.3.1 Qualitative justification of some absorption bands:  
 
The absorption bands in the present chalcogenide glasses are appearing in the far infrared 

region 30-600 cm-1. The far infra-red transmission measurement of the Sn8Se74Pb18-xGex(x = 
7,8,9,10,11 at. %) materials are discussed under the following assumptions: ( i) ‘valence force field 
model’ (VFF) [21] and (ii) the position of the intrinsic IR features is influenced mainly by 
stretching force constants of corresponding bonds formed in the material. The wavenumbers of the 
vibration modes in the far infrared region is determined by the reduced  mass of the atoms and the 
interatomic force within the group of the atoms comprising the amorphous network. The 
wavenumber ν is given by the following formula 

                               ʋ ൌ
ଵ

ଶᴨ௖
ቀ௞

µ
ቁ
ଵ/ଶ

                                                                                   (2)  

 
Where k is the stretching force constant of the bond, c is the speed of light and μ is the reduced 
mass of the molecule/bond which is given by  
 

																																	µ ൌ
ெ₁ெ₂

ெ₁ାெ₂
                                                                                           (3)  

 
were M1 and M2 are the atomic masses of the two atoms. The force constant which gives the 
measure of strength of bond can be calculated using the relation given by Gordy [22] 
 

ᵣܭ																														 ൌ ܽܰ ቀ
ఢೌ	ఢ್
ௗ²
ቁ

¾
൅ ܾ                                                                        (4) 

 
This relation holds accurately for a large number of diatomic and simple polyatomic 

molecules in their ground states. Here, a and b are constants which depend on the structural unit 
type, d is the bond length,ϵa and ϵb are the electronegativities in the Pauling scale and N is the bond 
order, which can be determined from the expression  
 

   																							ܰ ൌ
ௗାଶ௥₁ିଷ௥₂

ଶௗା௥₁ିଷ௥₂
																																																																																															      (5)          

             
where r1 and r2 are  the covalent radii for the single and double bond, respectively. Secondly 
Somayayulu [23] has developed a method for predicting the polyatomic force constants by using 
the elemental covalent force constants and electronegativities as 
 

                    KAB= (KAAKBB)1/2+ሺ߯஺ି߯஻ሻଶ                                                      (6)  
 
Here KAB is the force constant between the elements A and B, and kAA and kBB are the force 
constants for bonds A–A and B–B, respectively, the values of which are (105 dyne cm-1) 1.29 for 
Ge–Ge, 1.21 for Sn–Sn, 0.8 for Pb-Pb [24] and 1.91 for Se–Se. Bond-stretching forces acting as 
mechanical constraints are present in Ge, Se, Pb and Sn. The bond bending constraints are 
important in Ge and Se but may be ignored in Sn and Pb because of larger covalent radii and the 
corresponding force constant in Sn and Pb are weak compared to Ge and Se. The force 
constants,bond length, reduced mass of all possible bonds are shown in Table3.3 
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Table3.3 Various bonds possible in material with their reduced mass, bond length, and force constants. 
 

Bond Rreduced
mass10-26  

KgU-1)(μ)  

Bond 
length 
(nm)(d)  

Force 
Constant 
 KAB(ev)  

Ge-Ge  6.06 0.245 1.29
Ge-Sn  7.513 0.262 1.25
Ge-Pb  8.92 0.298 1.02
Ge-Se  6.301 0.239 1.93
Pb-Se  8.82 0.291 1.24
Pb-Sn  12.53 0.315 0.99
Pb-Pb  17.2 0.35 0.8
Sn-Se  7.884 0.257 1.52
Sn-Sn  9.882 0.28 1.21
Se-Se  6.559 0.232 1.91

 
The basic information about the atomic configuration of the glasses in amorphous state 

can be obtained from comparing the IR spectra of the amorphous state of the glasses with their 
crystalline analogues. On comparing the IR spectra of both states it is found that the basic 
structural units in the glasses are essentially the same as those in the corresponding crystalline 
material.  

 
3.3.2:- Quantitative justification of some absorption bands  
  The physical properties of chalcogenide glasses has been explained on the basics 

three models. (i) Chain crossing model (CCM) of Tronc et al [25], (ii) the random covalent 
network model (RCNM) of Lecovsky et al [26], (iii) chemically ordered network model (CONM) 
[27]. According to CONM priorities of heteropolar bonds formation are greater over the 
homopolar bonds and the bonds are formed in order of their decreasing bond energy until all the 
available valencies of participating atoms are satisfied. A lot of work has been done to understand 
the glassy structure of selenium. The studies have revealed that Se consists of Se8 rings and Sen 
spiral chains, and in case of binary Ge-Se chalcogenide glasses Ge(Se1/2)4 tetrahedral, Ge2(Se 1/2)6 
ethane like and Ge(Se1/2)2 structural units were formed [28]. In the present chalcogenide glassy 
system various absorption bands are appearing in the far infrared region 30-600 cm -1 as shown in 
the Fig. 3.3( a),(b) and tabulated in the Table 3.4. We have observed all possible hetropolar bonds 
of Pb, Sn and Ge with Se in the FTIR spectrum.  
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Table3.4 FTIR spectrum peak assignment to various possible bands in Sn8Se74Pb18-xGex(x=7,8,9,10,11 at.%) 
 

Sr.no.  x=7  x=8 x=9 x=10 x=11   Assignment 

1  49,69  55 39,53 55 47,67  Se8 (E2 Mode) 

2  84  84 81 84 89  Se8 (E2 Mode) 

3  -  - 107 - -  TrigonalSe(A2 Mode)

4  114  110 - 116 112  Sn(Se1/2)4 
5  132  130 130 - 134  Pb-Se 

6  153  - 153 158 150  Sn(Se1/2)4 

7  181  174 185 - 178  GeSe2  

8  -  - 198 198 197  GeSe4(RamanMode)

9  203  211 - - -  Ge(Se1/2)4 

10  229  239 225 227 -  Se8 (A1,E Modes) 

11  317  279 250,282 258 248,271  Ge(Se1/2)4 
12  -  377 355  Sn(Se1/2)4 

 
 

In Sn8Se74Pb18-xGex Ge atoms are supposed to replace the Pb atoms in the ‘outrigger’ sites. 
Different studies have revealed that the Pb is present in Pb+2state and forms ion covalent bonds 
with two non bridging negatively charged chalcogen atoms, which in turn form separate covalent 
bond with one Ge atom to yield GeSe4/2 tetrahedral units.  In Sn8Se74Pb18-xGex glasses, the 
substitution of Pb atoms by Ge atoms takes place up to x = 11. As Ge is increased the 
concentration of Ge-Se bonds increases and the system contains mostly hetropolar Ge-Se bonds in 
chemical ordered network stage and the number of the Pb-Se bonds decreases. Also the additional 
peaks at higher wave number are due to the vibrational mode of Sn(Sn1/2)4 tetrahedron as reported 
by Mikrut et al [38]. These peaks results from Sn substitution for Ge, it will prefer to enter the 
“outrigger” tetrahedral site. As Sn (1.41Å) has large covalent radius than Ge (1.22Å) so it is likely 
to enter “outrigger” sites located at edges of molecular clusters where it would cause the greatest 
reduction in stress [34]. According to CONM and calculated relative probability of bond formation 
shows the least existence of homopolar bonds which is in good agreement with the Far-infrared 
spectra results. There is a replacement of Pb atoms by Ge atoms in the glasses network, thus Ge 
atoms are incorporated into the clusters of Pb-Se alloys. Thus, addition of Ge introduces strength 
to the network and leads to a considerable strengthening of the Ge-Se network structure. The 
consequences of this addition are increase in mean bond energy and Tg. with increasing Ge 
concentration. 

 
4. Conclusions  
 
A thermal analysis to know glassy nature and FTIR to study structure and bonding 

arrangements has been carried out on Sn8Se74Pb18-xGex (x=7,8,9,10,11 ) systems. The results are 
interpreted in terms of the vibrations of the isolated molecular units in such a way as to preserve 
fourfold and twofold coordination for germanium, tin and chalcogen atoms respectively. The 
theoretically calculated mean bond energy and experimental analysis of far-infrared spectrum 
agree with the CONM and chemical bond approach model. On the basics of vibrational spectra we 
assume that Ge is always tetrahedrally coordinated and Pb octahedrally coordinated in the present 
glass system. We see the absorption bands due to Se rings, Sn-Se, Ge-Se and Pb-Se bonds in our 
FIR spectra. The effect of increasing concentration of Ge-Se bonds enhances the strength of glassy 
network hence rises the glass transition temperature.  
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