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A dendrimer is a tree-like highly branched polymer molecule, which has some proven 
applications, and numerous potential applications. The Hosoya index of a graph is defined 
as the total number of the independent edge sets of the graph, while the Wiener index is 
the sum of distances between all pairs of vertices of a connected graph. In this paper, we 
give a relation for computing Hosoya index and a formula for computing Wiener index, of 
an infinite family of dendrimers.  
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1. Intoduction 
 
Dendrimers are nanostructures that can be precisely designed and manufactured for a wide 

variety of applications, such as drug delivery, gene delivery and diagnostics etc. The name 
“dendrimer” comes from the Greek word "δένδρον", which translates to "tree".  A dendrimer is 
generally described as a macromolecule, which is characterized by its highly branched 3D 
structure that provides a high degree of surface functionality and versatility.  The first dendrimers 
were made by divergent synthesis approaches by Vögtle in 1978 [1]. Dendrimers thereafter 
experienced an explosion of scientific interest because of their unique molecular architecture. 

A topological index is a numerical quantity derived in a unambiguous manner from the 
structure graph of a molecule. As a graph structural invariant, i.e. it does not depend on the 
labeling or the pictorial representation of a graph. Various topological indices usually reflect 
molecular size and shape. One topological index is Hosoya index, which was first introduced by H. 
Hosoya [2]. It plays an important role in the so-called inverse structure–property relationship 
problems. For detais of mathematical properties and applications, the readers are suggested to refer 
to [3,4] and the references therein. As an oldest topological index in chemistry, Wiener index first 
introduced by H. Wiener [5] in 1947 to study the boiling points of paraffins. Other properties and 
applications of Wiener index can be found in [3, 6, 7].  For other tological indices, please see 
[8-11]. 
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Let  be a graph with vertex set  and edge set . For a vertex , 

we denote by  the neighbors of  in G . 
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G or written as d(v) for short. A vertex v of a tree T is called a branching point of T if , 

and a vertex in a tree 
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T is called a leaf when 1)( =vd . A matching of  is a edge subset in 

which any two edges can not share a common vertex. A matching in  with k edges is called a 

k- matching of . The Hosoya index of molecular graph , denoted by , is defined as [6]: 
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where  denotes the number of  k-matchings in G  for , and 

. The Wiener index of a molecular graph G was defined as [5]: 
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where the summation goes over all pairs of vertices of G and denotes the distance of the 

two vertices u and v in the graph G (i.e., the number of edges in a shortest path connecting u and v).  
For other undefined notations and terminology from graph theory, the readers are referred to [8].  

),( vudG

In this paper we study the Hosoya index and the Wiener index of an infinite class of dendrimers. 

Structure of dendrimer D[n] is shown in Fig. 1 for 3,2,1=n , where denotes the step of growth 

in this type of dendrimer.  
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Fig. 1  Structure of dendrimer D[n] for 3,2,1=n  
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2. Main results and discussion 
 
To obtain our main results, we list some important lemmas which will be used in the 

subsequent proofs. 
Lemma 1. [3] Let G be a graph, and v ∈ V (G). Then we have 
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Lemma 3. [16,17] Let T be a tree of order n,  be the all branching points of T with 
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Let  be the binary tree whose step of growth is equal to  [see Fig. 2].  In the following 

theorem, we give the recursive formula for .  
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Fig. 2  The trees  for nT 3,2,1,0=n  

Theorem 1. , where )()(2)()( 12
2

1 −−− += nnnn TzTzTzTz 3)(,1)( 10 == TzTz . 

Proof. From the definition of Hosoya index, it is easy to check that . When 3)(,1)( 10 == TzTz
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2≥n

)(Tz n

, assume that  is the first vertex of with  as its only neighbors (see Fig. 2) , by 

Lemma 1, we have  
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Note that  consists of two components, each of which is ,  and 

, are all isomorphic to . By Lemma 2, we have 
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which completes the proof of this theorem.                              ■   

Theorem 2. , where 3
1

2
2

4
1 ))(4)([( −−− + nn TzTznDz 5])1[( =Dz . 

Proof. From the definition, we obtain 5[( ])1 =Dz

dc,

 immediately. For , assume that  is 

the center vertex of  with  as its four neighbors. Obviously, consists of 

four components, each of which is . By symmetry, we find that
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which finishes the proof of this theorem.                             ■ 

Nest we consider the Wiener index of . In the following theorem we present the formula of 

. From the definition of Wiener index, 
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, let be the vertex of  with the distance  from the center vertex iv ][nD iFor 11 ≤≤ i n −
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O . We find that, for , the number of such ’s is 11 −≤≤ ni iv 11 224 +− =× ii , and  the graph 

 has three components, two of which have the same order: 

, while the remaining one of which has the order: 
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    Thus we complete the proof of this theorem.                           ■ 
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