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1. Introduction  

 
The capability of free electrons in metal nanoparticles to oscillate in response to 

electromagnetic waves produces collective oscillations that are known as surface plasmons [1]. 

The resonance frequency of surface plasmons depends on the size and shape of the nanoparticles, 

the local environment, and the material itself. Plasmonics is the branch of Physics that explores 

how the electromagnetic fields can be confined over dimensions smaller than the wavelength [2]. 

Plasmon resonances allow for the enhancement and manipulation of local electromagnetic fields at 

the nanoparticle surfaces. There are several theoretical approaches to analyze the optical response 

of metal nanoparticles depending on their shape. The Mie theory [3], which is an exact solution of 

light scattering by a sphere, accurately reproduces the optical properties of diverse metallic 

nanoparticles with spherical geometry. The quasi-static approximation is another analytical theory 

in which the Laplace equation is solved by using a frequency dependent dielectric function. This 

approximation can be applied to metal nanoparticles with arbitrary shape. On the other hand, some 

numerical methods, such as discrete dipole approximation (DDA) [4–9], the finite element method 

(FEM) [10,11], and the finite difference time domain (FDTD) take advantage on the currently 

available computing resources to solve the plasmon characteristics of metal nanoparticles with 

more complex geometries, including core-shell nanostructures [12–14]. The plasmon hybridization 

method was used to study concentric nano-shell and dimers [15,16]. Moradi studied various 

configurations of systems with cylindrical symmetry [17–19]; these interesting studies are based 

on in the quasi-static approximation and the addition theorem for Bessel function.  

It is important to mention that the interaction of radiation with matter is studied by the 

dielectric function, which depends on the angular frequency; this kind of material is called 

dispersive. In many works, the Drude model is considered to approximate the dielectric function of 

metallic nanoparticles. Due to the large availability of synthesis process of metal nanoparticles, the 

interest on Plasmonics has increased in the last few years. Most of the research related with 

Plasmonics has been focused on silver and gold nanoparticles due to their interesting optical 

properties and wide potential applications. The plasmon resonance of round-shaped nanoparticles 

of silver and gold with sizes around 10 nm has been reported in the visible region, around 380 [20] 
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and 520 nm [21], respectively. The dependence of the plasmon characteristics on the local 

environment surrounding the metal nanoparticles has been used for chemical and biological 

sensing applications. Another application for plasmons is the surface-enhanced Raman 

spectroscopy phenomena (SERS). SERS effect appears due to two mechanisms: an 

electromagnetic mechanism (plasmon) and a chemical mechanism. SERS that use silver and gold 

nanoparticles are employed for the detection of pollutants [22], biomolecules, bacteria [23], and 

cancer cells [24]. Other important examples in which SERS was employed are the reports by Beier 

et al. [25] and Premasiri et al. [26]; Beier et al. [25] studied β-amyloid peptide using gold nano-

shells as the substrate, whereas Premasiri et al. [26] studied human blood using gold nanoparticles 

and silicon dioxide (SiO2) as the substrate.  

In the present work, we determine the surface plasmon resonances of silver nanoparticles 

in vacuum and water media. For this, we employed the COMSOL Multiphysics
®
 package and a 

quasi-static model developed by Moradi along the Drude model for the dielectric function. 

Different systems composed of silver nanoparticles were studied here and the resonances were 

found to be in the visible spectrum with good agreement with the experimental values reported in 

literature.  

 

 
2. Theory  
 

One of the systems that we studied here corresponds to the optical modes of a metal single 

cylinder of radius 𝑟. The transcendental equation for the optical modes associated with this 

cylinder structure is given by the following equation [27]:  

 

𝛽𝐼𝑚
′ (𝜂𝑟)𝐻𝑚

(1)(𝛽𝑟) + 𝜂𝐼𝑚(𝜂𝑅)𝐻′
𝑚
(1)

(𝛽𝑟) = 0                                         (1) 

 

where 𝛽 = √𝜀0𝜔
2/𝑐2, 𝜂 = √−𝜀(𝜔)𝜔2/𝑐2, 𝐻𝑚

(1)
(𝛽𝑟) is the Hankel function, and 𝐼𝑚(𝜂𝑟) is the 

modified Bessel function, the prime means the total. In this article, we consider that the 

nanostructures behave like in the Drude model, that is, the dielectric permittivity is:  

 

𝜀(𝜔) = 𝜀∞ −
𝜔𝑝

2

𝜔(𝜔+𝑖𝛾)
                                                              (2) 

 
where 𝜀∞ and 𝛾 at account for the permittivity at high frequencies and the collision frequency, 

respectively, while 𝜔𝑝is the bulk plasma frequency.  By considering the limit for small radii (about 

10 nm), the solution of the dispersion relation is (𝜔𝑠is the resonance plasmon frequency)[27]: 

 

𝑅𝑒[𝜔] = √ω𝑠
2 −

𝛾2

4
 ,                                                                  (3) 

 
and 

 
𝐼𝑚[𝜔] = −𝛾/2 ,                                                                           (4) 

 
 

 

By using the Drude model, with 𝛾2 ≪ 𝜔𝑝
2, then 

 

𝑅𝑒[𝜔] =
𝜔𝑝

√1+𝜀∞
 .                                                                    (5) 

 
On the other hand, one of the results of Moradi for the nanotube structure [18], when the 

longitudinal wave vector is zero, is the following:  
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𝜔±
2 =

𝜔𝑝
2

2
[1 ± (

𝑟1

𝑟2
)
𝑚

].                                                               (6) 

 
The latter equation is useful to calculate the resonances for a nanotube structure (that is, a 

nanotube cylindrical structure), where 𝑟1 is the internal radius (radius of the aperture) and 𝑟2 the 

external radius (the shell radius, that it, from the center to the nanotube periphery). Moradi solved 

the Laplace equation, whose radial solution concerns modified Bessel functions, and by applying 

the boundary conditions, he found the resonance frequencies—the plasmons.  

For the non-concentric nanotube structure (that is, a non-concentric core shell cylindrical 

structure), it is useful the addition theorem for modified Bessel functions to evaluate the boundary 

conditions due to a broken symmetry [18]. For some considerations, the resonances are:  

 

𝜔±
2 =

𝜔1
2+𝜔2

2

2
± √(

𝜔1
2−𝜔2

2

2
)
2

− 𝜔𝑝
4𝑞𝑎1𝑞𝑎2𝐼0

2(𝑞𝑑)𝐾0(𝑞𝑟1)𝐾0
′(𝑞𝑟1)𝐼0(𝑞𝑟2)𝐼0

′(𝑞𝑟2) ,   (7) 

 

where 𝜔1
2 = 𝜔𝑝

2𝐼𝑚
′ (𝑞𝑟1)𝐾𝑚(𝑞𝑟1), 𝜔2

2 = −𝜔𝑝
2𝐾𝑚

′ (𝑞𝑟2)𝐼𝑚(𝑞𝑟2), 𝐾𝑚(𝑞𝑟1) is the Kelvin function, 

the prime means the total derivate and 𝑞 is the longitudinal wave vector. Here, the parameter of 

distance between the axis of each cylinder is d. In a similar way, for the case of two parallel 

cylinders along to the z axis (a pair of nanorods), the equation of the resonant frequencies is [28]:  

 

𝜔±
2 =

𝜔𝑛𝑎𝑛𝑜𝑟𝑜𝑑−1
2 +𝜔𝑛𝑎𝑛𝑜𝑟𝑜𝑑−2

2

2
± √(

𝜔𝑛𝑎𝑛𝑜𝑟𝑜𝑑−1
2 −𝜔𝑛𝑎𝑛𝑜𝑟𝑜𝑑−2

2

2
)
2

+ 𝜔𝑝
4(𝜅𝑟1)

4[𝐾0(𝜅𝑑)𝐼0(𝜅𝑟1)𝐼0(𝜅𝑟1)]
2 .     (8) 

 

where 𝜅2 = 𝑞2 −
𝜔2

𝑐2 ; if the distance between the centers of the two nanorods is theoretically 

infinite, the optical behavior of the system is as if it were a single nanorod, this means 𝜔± =

𝜔𝑛𝑎𝑛𝑜𝑟𝑜𝑑 =
𝜔𝑝

√1+𝜀∞
 

In this work, we used the COMSOL Multiphysics® software in order to calculate the 

scattering cross section per unit length (𝐶𝑠𝑐𝑎𝑡), the absorption cross section per unit length (𝐶𝑎𝑏𝑠), 

and the sum of both, called extinction cross section per unit length (𝐶𝑒𝑥𝑡), with the aim of 

obtaining the plasmons. COMSOL Multiphysics® software uses the finite element method. Is it 

important to point out the following two considerations: (1) the studied systems correspond to a 

cylindrical symmetry (that is, assuming that cylinder length is infinite, which leads to the use of 

longitude units instead of area units); and (2) the Drude model is the operative one. These 

considerations permit to work with a realistic material besides saving time for computational 

calculus.  

 
 
3. Results and discussion 
 

The following texts is divided in two subsections to properly address each of the studied 

cylindrical configurations. The first subsection is for single-cylinder systems, in which the nanorod 

and different nanotube configurations are included. The second subsection is for a two-cylinder 

system, namely, a pair of nanorods. Figure 1 aims to help the reader about the different 

configurations studied in the present research.  
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Fig. 1. Cylindrical configurations studied in the present research. 

 

 

3.1. Single-cylinder systems  

3.1.1. Nanorods 

The first system addressed in this work is a single non-hollow silver cylinder with a radius 

of 5.0 nm (nanorod), in which we applied an incident plane wave with transversal-electric (TE) 

polarization, that is, �⃗⃗� = �⃗⃗� 0𝑒
−𝑖𝑘𝑥, by setting the electric field oscillating in the y axis; the 

modulus of the electric field for this case is shown in the Figure 2. Since the electric field of the 

incident plane wave oscillates in y axis, then the electrons of the material will vary along of the 

same y direction; therefore, this induce the modulus of the electric field to have its maximum 

intensities along the y direction.  

 

 
 

Fig. 2. Modulus of the electric field for the wavelength of 360 nm, for a cylinder with radius of 5.0 nm. 

 
 

The calculated extinction cross section as a function of wavelength is shown in Figure 3, 

in which the resonance is appreciated at about 335.4 nm. This result is consistent with that 

reported in Ref. [27], in which the resonance is around 3.7 eV (that is, 335 nm).  
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Fig. 3. Extinction cross section as a function of the wavelength for a cylinder with a radius of 5.0 nm.  

 
 

As resonances depend on radius, in Figure 4 we present the calculated extinction cross 

section values for the single cylinder structure having different radii: 5.0, 7.5, and 10.0 nm. Here, 

it is observed that as the radius of the cylinder increases, there is a redshift from 335.4 to 336.9 

nm, thus confirming that the optical behavior is modified depending on the cylinder size. It is 

important to note that although its resonance varies, the non-retarded approximation is consistent 

for a radius of around 5 nm.  
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Fig. 4. Extinction cross section as a function of the wavelength for the cylinder structure  

with different radii: 5.0, 7.5, and 10.0 nm. 
 

 

3.1.2. Concentric nanotube by Drude model 

The radii, electrical permittivity (𝜀(𝜔) = 1 −
𝜔𝑝

2

𝜔2) and plasma frequency (
ℎ

2𝜋
𝜔𝑝 =

8.03𝑒𝑉,) are the same as Moradi’s work, with the only difference that the present work uses the 

finite element method and Moradi uses the non-retarded approximation,  

 

𝜔±
2 =

𝜔𝑝
2

2
[1 ± (

𝑟1

𝑟2
)
𝑚

] .                                                        (9) 

 

Once the calculations made with COMSOL are validated, the dielectric permittivity is 

modified to study the silver nanostructures. For m ≠ 0, substituting values (r1 = 5.0 nm and r2 = 

8.0 nm) gives two plasmons located at 171 and 356 nm. On the other hand, when using COMSOL 
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(the Finite Element Method), the two plasmons resulted at 172 and 359 nm. This represents an 

error of less than 1% with respect to the theoretical result, thus showing that the methodology is 

valid and reliable. The modulus of the electric field of the concentric and non-concentric nanotube 

is shown in Figures 5 and 6 respectively. 

 

 
 

Fig. 5. Modulus of the electric field for 400 nm wavelength for the concentric nanotube.  

The r1 and r2 of the nanotube are 5.0 and 8.0 nm, respectively. 

 

 

 
 

Fig. 6. Modulus of the electric field for the 400 nm wavelength for the non-concentric nanotube.  

The 𝑟1 and r2 of the nanotube are 5.0 and 8.0 nm, respectively, and the center separation is 2.8 nm. 

 

 

3.1.3. Concentric and non-concentric nanotubes  
In the present subsection, we present the study on different non-concentric nanotube 

configurations by considering the model by Nápoles et al. [27] (described in the Theory section); 
we also include here the analysis performed on concentric nanotubes. The behavior of light 
interacting with different concentric nanotube configurations will be also studied; in this regard, 
Figure 7 shows the extinction cross section for different internal and external radii. It is observed 
here that there are two resonances for the nanotube structures, independently of the radius value. 
Also, as the relation between the external and internal radius is lower, the separation and the 
intensity ratio between both resonances is increased, that is, the resonance at the lowest frequency 
is displaced more to the right (to the red) and increases in intensity, while the resonance at the 
higher frequency is displaced more to the left (to the blue) and decreases in intensity. In the case of 
𝑟1 = 0 and  𝑟2 = 8 𝑛𝑚 (a nanorod) the plasmon frequency converges to 336 nm which is the 
plasmon resonance in the non-retarded approximation. 
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Fig. 7. Extinction cross section as a function of wavelength for a concentric nanotube structure  

for different radius configurations. 

On the other hand, Figure 8 shows the results on non-concentric nanotubes with different 

center separation values (d), with 𝑟1and 𝑟2 equal to 5 nm and 8 nm. We observed here a red shift of 

the resonances as the parameter d increases, which was also noted by Moradi [17]. In Figure 9 we 

show the modulus of the electric field for the particular case of the non-concentric nanotube 

structure with 𝑟1 = 5.0 nm, 𝑟2 = 8.0 nm, and d = 1.5 nm, as calculated for a wavelength of 440 nm.  
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Fig. 8. Extinction cross section as a function of wavelength for a non-concentric nanotube for different 

distances between the centers of the cylinders configurations. 

 

 

 
 

Fig. 9. Modulus of the electric field for the 440 nm wavelength. The 𝑟1, 𝑟2, and d of the non-concentric 

nanotube are 5.0 nm, 8.0 nm, and 1.5 nm, respectively. 
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With the aim of studying the symmetry with respect to the 𝜃 angle, three calculations were 

made by fixing the center separation at 1.5 nm: (x = -1.5 nm, y = 0), (x = 1.5 nm, y = 0), and (x = 

0, y = 1.5 nm).  
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Fig. 10. Extinction cross section with respect to wavelength for a non-concentric nanotube cylinder for 

different configurations. The 𝑟1, 𝑟2, and d of the non-concentric nanotube are 5.0 nm, 8.0 nm, and 1.5 nm, 

respectively. 

 

 

The first conclusion, as shown in Figure 10, is that the symmetry does not vary. However, 

when studying the case of (x = 1.5 nm, y = 1.5 nm), the symmetry was broken, as shown in Figure 

11. But, when the studied values are (x = -1.5 nm, y = 1.5 nm), (x = 1.5 nm, y = 1.5 nm) and (x = -

1.5 nm, y = -1.5 nm), we observed that the symmetry is maintained constant again, as shown in 

Figure 12. From these observations, we concluded that the 𝐶𝑒𝑥𝑡 depends only on the center 

separation.  
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Fig. 11. Extinction cross section as a function of wavelength for a non-concentric nanotube cylinder 

for different configurations. The 𝑟1, 𝑟2 of the non-concentric nanotube are 5.0 nm and 8.0 nm, 

respectively, the distance between the center of the cylinder 𝑑 are 1.5 (blue line) and √4.5 (red line) 

nm. 
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Fig. 12. Extinction cross section with respect to wavelength for a non-concentric nanotube cylinder 

for different configurations. The 𝑟1, 𝑟2, and d of the non-concentric nanotube are 5.0 nm, 8.0 nm, and 

√4.5 nm, respectively. 

 

 

The first two-cylinder system that we studied here corresponds to two cylinders with radii 

of 5.0 nm each, with a separation between them of 1.0, 5.0, 10.0, 20.0, and 40.0 nm, using an 

arrangement where the cylinders are next to each other and parallel to the horizontal, and with the 

magnetic field incident along the 𝑥 axis, that is, with �⃗⃗� = �⃗⃗� 0𝑒
−𝑖𝑘𝑥. Figure 13 shows the modulus 

of the electric field for the cases in which the separation is 1.0, 5.0, and 40.0 nm, as examples. In 

Figure 14 we can see that the shorter the distance between the two cylinders the greater the number 

of produced resonances; this is understandable, since the shorter the distance between the two 

cylinders the greater the interaction between them. For example, three resonances appear with just 

1.0 nm of separation, but it is reduced to two resonances when the distance is increased to 5.0 nm; 

just one resonance is obtained with the separation values of 10.0, 20.0, and 40.0 nm. In conclusion, 

when the magnetic field incident is along the 𝑥 axis, a longer distance between the two cylinders 

leads to a smaller interaction between them and, thus, a smaller number of resonances, which, in 

turn, are more intense and more displaced to the red.  

 

 
 

Fig. 13. Modulus of the electric field for the wavelength 340 nm, for the two-cylinder system with 

radius of 5.0 nm each, with a separation between them of (a) 1.0 nm, (b) 5.0 nm, and (c) 40.0 nm. The 

magnetic field incident is along the 𝑥 axis. 
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Fig. 14. Extinction cross section as a function of the wavelength for the two-cylinder system with 

radius of 5.0 nm each, with different separation values between them. The magnetic field incident 

was along the 𝑥 axis. 

 

 

The second two-cylinder system that we studied is similar to the previous one, but with the 

magnetic field incident along the 𝑦 axis, that is, with �⃗⃗� = �⃗⃗� 0𝑒
−𝑖𝑘𝑦. Figure 15 shows the modulus 

of the electric field for the cases in which the separation is 1.0, 5.0, and 40.0 nm, as examples.  

 

 
 

Fig. 15. Modulus of the electric field for the wavelength 400 nm, for the two-cylinder system with 

radius of 5.0 nm each, with a separation between them of (a) 1.0 nm, (b) 5.0 nm, and (c) 40.0 nm. The 

magnetic field incident is along the 𝑦 axis. 

 

 

In Figure 16 we can see that the shorter the distance between the two cylinders the greater 

the number of produced resonances, which is due to a higher interaction between them. This result 

is consistent with the previous case, where the magnetic field incident was at the x axis. However, 

for the present case, where the magnetic field incident is at the y axis, the resonances are displaced 

to the blue instead to red as the distance between the cylinders is longer. This is the main 

difference between both cases. 
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Fig. 16. Extinction cross section as a function of the wavelength for the two-cylinder system with 

radius of 5.0 nm each, with different separation values between them. The magnetic field incident 

was along the 𝑦 axis. 

 
 
4. Conclusions 

 
The behavior of light when interacting with silver nanotube structures was resolved by 

using the finite element method. An interesting result was observed when varying the radius of a 

single non-hollow cylinder (nanorod): a redshift and an increase of the extinction section were 

observed as the radius of each cylinder increases. This result means that the optical response of the 

material strongly depends on the geometry.  

For the nanotube case, it was observed a redshift of the resonance as the ratio between the 

external radius and the internal radius increases, and the symmetry depends only on the distance 

between the centers. For the present case, we observed two main results. First, when there is an 

offset of the arrangement only in the horizontal or only in the vertical axis, by keeping fixed the 

distance between the centers, the resonances that we find are the same (the symmetry is 

maintained); the following coordinates are clear examples: (x = 1.5, y = 0), (x = -1.5, y = 0) and (x 

= 0, y = 1.5). Second, when we make an offset on both the vertical and horizontal axis, the 

symmetry is lost as compared with the cases in which there was only an offset in one axis.  

However, the symmetry is recovered again if the distance between the centers is maintained, as in 

the following coordinates: (x = 1.5, y = 1.5), (x = -1.5, y = -1.5), and (x = -1.5, y = 1.5. Therefore, 

we conclude that resonance only depends on the distance between the centers of both cylinders 

(cylinders with fixed radii).  

When studying the case involving a pair of nanorods (two cylinders), it is observed that 

the separation between the cylinders affects the optical properties due to the change in the 

electromagnetic interaction between them. However, for the case where the separation between 

them is around 40 nm, the two-cylinder system behaves as a single nanotube. We also found that 

the plasmons depended on the way in which the field was affected, that is, it is different if it is 

affected by �⃗⃗� = �⃗⃗� 0𝑒
−𝑖𝑘𝑦 or �⃗⃗� = �⃗⃗� 0𝑒

−𝑖𝑘𝑥.  
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