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This study presents the development of Ni-doped ZnO nanostructures integrated with 
machine learning algorithms for enhanced NO2 gas sensing. The materials were synthesized 
via a modified wet chemical approach, with varying Ni concentrations forming Zn1-xNixO. 
XRD analysis confirmed successful Ni incorporation with crystallite size reduction from 
12.6 nm to 11.0 nm. The Zn0.90Ni0.10O composition demonstrated optimal sensing 
performance, achieving a sensitivity factor of 11.57 towards 10 ppm NO2 at 200°C, with 
response and recovery times of 166s and 59s respectively. Implementation of machine 
learning algorithms, particularly XGBoost regression, enabled precise gas concentration 
prediction (RMSE = 0.22 ppm) and reduced false positive rates by 87%. The ML-enhanced 
system achieved real-time monitoring capabilities with sub-100ms latency and maintained 
92% of initial response after 100 measurement cycles. This integrated approach combining 
materials engineering with intelligent data processing demonstrates significant potential for 
practical environmental monitoring applications. 
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1. Introduction 
 
The rapid advancement of industrialization and urbanization has led to increasing concerns 

about air quality and environmental pollution monitoring. Among various air pollutants, nitrogen 
dioxide (NO2) stands as a particularly hazardous gas, contributing significantly to respiratory 
ailments and environmental degradation [1,2]. This necessitates the development of reliable, 
sensitive, and selective gas sensing technologies capable of detecting NO2 at parts per million (ppm) 
concentrations under ambient conditions. Semiconductor compounds derived from metal oxides 
offer exceptional potential in gas detection technologies, characterized by distinctive chemical 
attributes, economic efficiency, and straightforward manufacturing processes [3]. Among these, zinc 
oxide (ZnO) has garnered substantial attention owing to its wide bandgap, excellent chemical 
stability, and superior electron transport properties [4]. However, pristine ZnO-based sensors often 
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struggle with limitations such as high operating temperatures, poor selectivity, and inadequate 
response times, which restrict their practical applications in real-world environments [5–7]. 

To address these challenges, various modification strategies have been explored, with 
transition metal doping emerging as a particularly effective approach. Nickel doping in ZnO has 
shown remarkable potential in enhancing gas sensing performance through multiple mechanisms 
[8,9]. The incorporation of Ni2+ ions into the ZnO lattice creates additional oxygen vacancies and 
modifies the electronic structure, leading to improved gas-surface interactions and enhanced sensing 
characteristics [10,11]. Furthermore, the presence of Ni dopants can facilitate the formation of p-n 
heterojunctions within the material, contributing to enhanced charge carrier separation and improved 
sensing response [12].  

Despite these advantages, the complex nature of gas sensing mechanisms and the influence 
of various environmental factors make it challenging to achieve optimal performance using 
conventional approaches alone. This is where machine learning (ML) techniques offer promising 
solutions. ML algorithms can effectively process multiple sensor parameters, account for 
environmental variables, and identify subtle patterns in sensor responses that might be overlooked 
by traditional analysis methods [13,14]. The integration of ML approaches with metal oxide gas 
sensors represents a paradigm shift in gas sensing technology [15]. By leveraging sophisticated 
algorithms, it becomes possible to enhance sensor selectivity, reduce false positives, and enable more 
accurate quantification of target gases in mixed gas environments [16]. Machine learning can 
compensate for sensor drift, cross-sensitivity issues, and environmental interference effects that have 
historically limited the practical implementation of metal oxide gas sensors [17]. 

The present research focuses on developing an enhanced NO2 sensing platform by 
combining Ni-doped ZnO nanostructures with advanced machine learning algorithms. This research 
comprehensively examines the impact of nickel incorporation on ZnO's crystallographic 
configuration, spectroscopic characteristics, and detection capabilities, with a focus on leveraging 
machine learning algorithms to enhance sensor functionality. By synthesizing ZnO nanostructures 
with varying Ni concentrations and implementing different machine learning approaches, we aim to 
establish a comprehensive understanding of the synergistic effects between material modification 
and intelligent data processing. The findings of this study have implications for the development of 
next-generation gas sensing technologies. The successful implementation of ML-enhanced Ni-
doped ZnO sensors could pave the way for more reliable environmental monitoring systems, 
industrial safety applications, and air quality control measures. Furthermore, the methodologies 
developed in this work could be extended to other metal oxide semiconductor systems, contributing 
to the broader field of smart sensing technologies. 

 
 
2. Materials and methods 
 
The synthesis of ZnO and Ni-doped ZnO nanostructures was accomplished using a modified 

wet chemical approach [18]. To prepare a zinc oxide precursor solution, zinc nitrate was precisely 
weighed and thoroughly dissolved in ultrapure water while maintaining consistent agitation at 
ambient temperature, resulting in a 0.1 molar concentration. Ammonia solution was added dropwise 
until achieving a pH of 8, resulting in the formation of a white precipitate. The solution was 
maintained under stirring for 40 minutes, followed by multiple washing cycles with deionized water 
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and ethanol. The precipitate was dried at 120°C for 1 hour and subsequently annealed at 380°C for 
40 minutes. 

Ni-doped ZnO samples were prepared with varying nickel concentrations (x = 0.04, 0.10, 
0.12, and 0.14) to form Zn1-xNixO. The synthesis procedure followed a similar protocol, with the 
addition of calculated amounts of nickel nitrate solution to achieve the desired doping concentrations. 
The resulting samples were labeled as ZnO, Zn0.95Ni0.05O, Zn0.90Ni0.10O and Zn0.85Ni0.15O. 

Gas sensors were fabricated by depositing the synthesized materials onto alumina substrates 
with pre-patterned gold interdigitated electrodes [19]. The sensing material was dispersed in ethanol, 
sonicated for 30 minutes, and drop-cast onto the substrate. The devices were dried at 70°C for 12 
hours to ensure complete solvent evaporation. 

Gas sensing measurements were conducted using a custom-built testing system equipped 
with mass flow controllers for precise gas mixing. The sensing performance was evaluated against 
NO2 concentrations ranging from 0.5 to 10 ppm at various operating temperatures (50-250°C). 

The sensor data processing and machine learning analysis were performed using Python 3.8 
with scikit-learn and TensorFlow libraries. The dataset comprised sensing responses from multiple 
measurement cycles, including response magnitude, response time, and recovery time as key 
features. Data preprocessing involved normalization using standard scaling and removal of outliers 
using the interquartile range method. 

Multiple machine learning algorithms were implemented. The dataset was split into training 
(80%) and testing (20%) sets, with cross-validation performed using a 5-fold strategy. 
Hyperparameter optimization was conducted using GridSearchCV to identify the optimal model 
parameters.  

 
 
3. Results and discussion 
 
Figure 1a presents the XRD patterns of the synthesized samples with varying Ni 

concentrations. The diffraction peaks of pure ZnO align with the hexagonal wurtzite structure, 
exhibiting characteristic peaks at 2θ values of 31.1°, 33.9°, 35.6°, 47.0°, 56.1°, 62.4°, and 67.6°, 
corresponding to (100), (002), (101), (102), (110), (103), and (112) crystal planes [20], respectively. 
Upon Ni doping, the peak positions show a slight shift toward higher angles, indicating successful 
incorporation of Ni2+ ions into the ZnO lattice [21]. The crystallite size calculated using the Scherrer 
equation reveals a decreasing trend with increasing Ni concentration, from 12.6 nm for pure ZnO to 
11.0 nm for Zn0.85Ni0.15O (Table 1). 
 

Table 1. Crystallite sizes and lattice parameters of ZnO and Ni-doped ZnO samples  
calculated from XRD data. 

 
Sample Composition Crystallite Size (nm) Lattice Parameters Unit Cell Volume (Å³) 

a (Å) c (Å) 
ZnO 12.6 3.249 5.206 47.62 
Zn0.95Ni0.05O 12.3 3.247 5.204 47.57 
Zn0.90Ni0.10O 12.0 3.245 5.201 47.51 
Zn0.85Ni0.15O 11.5 3.242 5.198 47.44  



238 
 

Surface morphology analysis using FESEM reveals significant changes in particle structure 
with Ni doping. Figure 1b shows the SEM micrograph of pure ZnO exhibiting uniform sphere 
nanostructures with an average particle size of approximately 55 nm. With increasing Ni 
concentration, the particle size gradually decreases, reaching approximately 39 nm for Zn0.85Ni0.15O 
(Figure 1c). This reduction in particle size correlates well with the XRD results and can be attributed 
to the inhibition of crystal growth by Ni2+ ions during the synthesis process [22]. 

 

 

 

 
Fig. 1. (a) XRD patterns of pure and Ni-doped ZnO samples showing characteristic peaks of hexagonal 

wurtzite structure; (b) SEM micrograph of pure ZnO displaying hexagonal nanostructures; (c) SEM image 
of Zn0.85Ni0.15O showing reduced particle size. 

 
 
Table 2 presents the elemental composition of the samples, showing an increasing Ni content 

corresponding to the nominal stoichiometric ratios [23]. The atomic percentages of Ni increase from 
0.13% for Zn0.95Ni0.05O to 0.72% for Zn0.85Ni0.15O, while maintaining the expected Zn:O ratios. 
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Table 2. Elemental composition of ZnO and Ni-doped ZnO samples determined by EDX analysis. 
 

Sample Composition Element Composition (Atomic %) Atomic Ratio 
Zn O Ni Zn/O (Zn+Ni)/O 

ZnO 48.46 51.54 - 0.94 0.94 
Zn0.95Ni0.05O 46.35 53.52 0.13 0.87 0.87 
Zn0.90Ni0.10O 44.62 55.19 0.19 0.81 0.81 
Zn0.85Ni0.15O 43.56 55.87 0.57 0.78 0.79 

 
 

FTIR spectroscopy provides insights into the surface chemistry and bonding characteristics 
of the samples. Figure 2 displays the FTIR spectra of pure and Ni-doped ZnO samples. The 
characteristic absorption band at 557 cm-1 corresponds to the Zn-O stretching vibration [24]. Upon 
Ni doping, a new absorption band appears around 470 cm-1, attributed to the Ni-O bond, with 
increasing intensity at higher doping concentrations. The broad band observed at 3390 cm-1 indicates 
the presence of surface hydroxyl groups [25], while the peak at 1630 cm-1 corresponds to adsorbed 
water molecules. 

 

 
 

Fig. 2. FTIR spectra of ZnO and Ni-doped ZnO samples highlighting characteristic vibrational modes  
and surface chemistry. 

 
 
The optical properties of pure and Ni-doped ZnO samples were investigated through UV-

visible spectroscopy and photoluminescence measurements. Figure 3a presents the UV-visible 
absorption spectra of the synthesized samples, revealing significant modifications in optical 
behavior with Ni incorporation. The band gap energies were calculated using the Tauc plot method, 
as shown in Figure 3b. Pure ZnO exhibits a band gap of 3.37 eV, while Ni doping leads to a 
systematic decrease in the band gap energy. The observed band gap values are 3.24, 3.21, and 3.16 
for Zn0.90Ni0.05O, Zn0.90Ni0.10O and Zn0.85Ni0.15O, respectively. The narrowing of the energy gap can 
be explained by the introduction of intermediate electronic states originating from nickel's d-orbital 
configuration, which create new energy levels within the original semiconductor's forbidden region. 
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Fig. 3. (a) UV-visible absorption spectra of pure and Ni-doped ZnO samples showing systematic changes in 
optical absorption. (b) Tauc plots for band gap determination of pure and Ni-doped ZnO samples. 

 
 
Photoluminescence spectra (Figure 4) reveal multiple emission bands: a sharp near-band-

edge emission at 392 nm and several visible emission bands [23]. The correlation between ultraviolet 
and visible light emissions demonstrates a consistent pattern linked to nickel content levels. The 
luminescence peaks observed at wavelengths of 479 nm and 520 nm can be traced to specific crystal 
lattice defects: namely oxygen-deficient sites and zinc atoms positioned between regular lattice 
positions. As nickel concentration rises, the luminescence spectrum shifts towards longer 
wavelengths, suggesting a greater prevalence of structural imperfections [26]. 

 
 

 
 

Fig. 4. Room temperature photoluminescence spectra showing near-band-edge and defect-related emissions. 
 
 
The gas sensing characteristics of ZnO and Ni-doped ZnO samples were systematically 

investigated under various operating conditions. The sensors' performance was evaluated based on 
their response to different NO2 concentrations, operating temperatures, and cross-sensitivity to 
interfering gases. Figure 5 illustrates the dynamic response curves of pure and Ni-doped ZnO sensors 
to 2 ppm NO2 at 200°C. The Zn0.90Ni0.10O sensor exhibited the highest response, showing a 
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sensitivity of 11.57 towards 10 ppm NO2, compared to 2.42 for pure ZnO. The superior performance 
stems from the strategic defect density and heightened electron-hole transport efficiency realized 
through precise dopant concentration. 

 
 

 
 

Fig. 5. The response curves of pure and Ni-doped ZnO sensors to varying NO2 concentrations were 
measured at 200°C. 

 
 
The effect of operating temperature on sensor response was investigated in the range of 50-

250°C (Figure 6). All sensors showed maximum response at 200°C, with performance degradation 
at higher temperatures due to increased desorption rates. The Ni-doped samples demonstrated 
improved low-temperature sensing capabilities, with Zn0.85Ni0.15O maintaining 65% of its maximum 
response at 150°C. 

 

 
 

Fig. 6. Temperature-dependent sensor response showing optimal operating conditions at 200°C. 
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Selectivity studies were conducted against common interfering gases including CO, NH3, 
C2H5OH, and H2. Figure 7 demonstrates the superior selectivity of Ni-doped sensors towards NO2, 
with response ratios (SNO2/Sinterfering) exceeding 5.8 for all tested gases. This enhanced selectivity is 
attributed to the preferential interaction between NO2 molecules and Ni-modified surface sites [27]. 

 

 

Fig. 7. Selectivity pattern of Zn0.90Ni0.10O sensor towards NO2 against common interfering gases. 
 
 
Response and recovery times were analyzed as a function of NO2 concentration and 

operating temperature. Table 3 summarizes these parameters, showing that Zn0.90Ni0.10O achieves 
response and recovery times of 166 s and 59 s respectively at 200°C for 5 ppm NO2. These improved 
kinetics result from optimized surface reaction rates and enhanced gas diffusion pathways. 

 
 

Table 3. Response and recovery times of ZnO and Ni-doped ZnO sensors  
at different operating temperatures and NO2 concentrations. 

 
Sample 
Composition 

Temperature 
(°C) 

NO₂ Concentration 
(ppm) 

Response Time 
(s) 

Recovery Time 
(s) 

ZnO 150 2.0 244 77 
200 2.0 224 49 
200 5.0 217 51 

Zn0.90Ni0.10O 150 2.0 187 75 
200 2.0 166 59 
200 5.0 157 60 

 
 
Long-term stability tests conducted over 30 days revealed excellent performance retention 

in Ni-doped sensors. The Zn0.90Ni0.10O maintained 92% of its initial response after 100 measurement 
cycles, significantly outperforming pure ZnO which showed 25% degradation under identical 
conditions. 
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The integration of machine learning algorithms with Ni-doped ZnO sensor data has enabled 
significant improvements in gas detection capabilities. We implemented a comprehensive ML 
framework to enhance sensor performance through advanced data analysis and pattern recognition. 
Feature importance analysis revealed key parameters affecting sensor performance (Figure 8). 
Principal Component Analysis (PCA) identified that response magnitude (38.5%), recovery time 
(27.3%), and operating temperature (21.2%) were the most significant features influencing sensor 
behavior. This analysis guided the optimization of sensor operating parameters and data processing 
strategies. 

 

 
 

Fig. 8. Feature importance analysis showing the relative contribution of different parameters to sensor 
performance. 

 
 
The developed ML models achieved remarkable classification accuracy in distinguishing 

NO2 from interfering gases. Support Vector Machine (SVM) classifiers demonstrated 96.8% 
accuracy in gas identification, while Random Forest algorithms achieved 94.5% accuracy (Figure 
9). The confusion matrix analysis revealed minimal misclassification events, primarily occurring at 
very low gas concentrations (<1 ppm). 

 

 
 

Fig. 9. Classification accuracy comparison between different ML algorithms for gas identification. 
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Prediction performance was evaluated using various regression algorithms for quantitative 
gas concentration estimation. The best results were obtained using XGBoost regression, achieving 
a Mean Absolute Error (MAE) of 0.15 ppm and Root Mean Square Error (RMSE) of 0.22 ppm for 
NO2 detection in the range of 0.5-10 ppm. Figure 10 illustrates the correlation between predicted 
and actual gas concentrations, showing excellent agreement (R2 = 0.985). 

 
 

 
 

Fig. 10. Correlation plot between predicted and actual NO2 concentrations using XGBoost regression. 
 
 
Comparative analysis against conventional methods demonstrated significant 

improvements in detection capabilities. Table 4 presents a detailed comparison showing that ML-
enhanced detection reduced false positive rates by 87% and improved the lower detection limit by a 
factor of 2.3 compared to traditional threshold-based detection methods. 

Real-time monitoring capabilities were validated through continuous operation tests. The 
ML system successfully processed sensor data streams with a latency of less than 100 ms, enabling 
rapid response to changes in gas concentration. The ML-enhanced system demonstrates superior 
performance in terms of selectivity, sensitivity, and real-time monitoring capabilities compared to 
traditional approaches. The integration of advanced algorithms with optimized Ni-doped ZnO 
sensors presents a promising solution for practical gas sensing applications requiring high reliability 
and accuracy. 
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Table 5. Comparative analysis of ML-enhanced detection versus conventional methods, including detection 
limits, response times, and error rates. 

 
Performance Metric Conventional Method ML-Enhanced Method Improvement 
Detection Limit (ppm) 1.15 ± 0.12 0.50 ± 0.05 2.3× better 
False Positive Rate (%) 8.4 ± 0.7 1.1 ± 0.1 87% reduction 
Response Time (s) 166 ± 8 98 ± 5 41% faster 
Error Rate (%) 12.3 ± 1.1 3.2 ± 0.3 74% reduction 
Drift (%/month) 7.8 ± 0.8 2.1 ± 0.2 73% reduction 
Cross-sensitivity Ratio 0.31 ± 0.03 0.08 ± 0.01 74% better 

 
 
4. Conclusion 
 
This comprehensive study demonstrates the successful development and optimization of Ni-

doped ZnO gas sensors enhanced through machine learning approaches for NO2 detection. The 
incorporation of Ni dopants significantly improved sensor performance, with Zn0.90Ni0.10O 
exhibiting optimal characteristics including a sensitivity of 11.57 towards 10 ppm NO2 compared to 
2.42 for pure ZnO, shortened response time of 166s, and recovery time of 59s at 200°C. Material 
characterization revealed systematic changes in structural and optical properties, with band gap 
reduction from 3.37 eV to 3.16 eV upon Ni doping and decreased crystallite size from 12.6 nm to 
11.0 nm.  

The integration of machine learning algorithms markedly enhanced sensor capabilities, with 
SVM classifiers achieving 96.8% accuracy in gas identification and XGBoost regression 
demonstrating excellent concentration prediction (R2 = 0.985, MAE = 0.15 ppm). The ML-enhanced 
system showed substantial improvements over conventional methods, including an 87% reduction 
in false positive rates, a 2.3-fold improvement in detection limit (reaching 0.50 ppm), and 74% 
reduction in cross-sensitivity. Long-term stability tests confirmed the durability of Ni-doped sensors, 
with Zn0.90Ni0.10O maintaining 92% of its initial response after 100 measurement cycles. These 
results establish the synergistic benefits of combining materials engineering with advanced data 
analytics, offering a promising platform for next-generation gas sensing applications requiring high 
sensitivity, selectivity, and reliability.  
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