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The ground state structural, electronic, optical, elastic and thermal properties of the copper 

thallium chalcogenides (CuTlX2: X=S, Se, Te) in the body centered tetragonal (BCT) 

phase have been studied using the accurate full potential linearized augmented plane wave 

(FP-LAPW) method. We have reported the electronic and optical properties with the 

recently developed density functional theory of Tran and Blaha and this theory are used 

along with the Wu-Cohen generalized gradient approximation (WC-GGA) for the 

exchange-correlation potential. Furthermore, optical features such as dielectric functions, 

refractive indices, extinction coefficient, optical reflectivity, absorption coefficients, 

optical conductivities, were calculated for photon energies up to 40 eV. The elastic 

constants at equilibrium in BCT structure are also determined. The thermodynamical 

properties such as thermal expansion, heat capacity, Debye temperature, entropy, 

Gruneisen parameter and bulk modulus were calculated employing the quasi-harmonic 

Debye model at different temperatures and pressures and the silent results were interpreted. 

Hardness of the materials was calculated for the first time at different temperatures and 

pressures. 
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1. Introduction 
 

There is currently a lot of interest in the science and potential technological applications of 

the series of compounds belonging to the A
I
B

III
C2

VI
 semiconductors family, where Cu is involved 

as a group I element. These materials normally crystallize in chalcopyrite structure, which is a 

super lattice of the cubic zinc-blende structure. The symmetry of the structure is lowered and 

therefore it is no longer cubic but tetragonal with the lattice parameters ratio (c/a) equal to or, in 

most of the cases, slightly less than 2 [1-7]. Cu-chalcopyrites have been attracting attention as 

potential materials for next-generation electro-optical and spin-electronics devices. These 

materials the most promising semiconductors with chalcopyrite structure used in the absorber layer 

of thin-film solar cells. Chalcopyrite based solar cells are becoming leading technologies for solar 

energy generators being champions in terms of efficiency (which is about 20%) among thin-film 

devices [8,9]. One of their mysterious features is super high tolerance to any radiation. Their life-

time in outer space was found to be at least 50 times as long as that of amorphous silicon solar 

cells. In fact, irradiation with quite high doses of MeV protons and electrons improves their 

performance. The material seems to repair itself at room temperature. Despite such achievements 

very little is known about these materials in comparison with Si or binary compounds. To make 
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the design of solar cells more scientific we have to learn more about the defects in the 

chalcopyrites [6-9]. 

The development of the computational methods has led a new class of first principle’s 

approaches. The complexities of experiments are removed as only the atomic numbers of the 

constituent atoms are required inputs. We found that the structural, electronic, optical, elastic and 

thermodynamic study have never been done by ab initio calculation for these compounds. 

Therefore in this paper we focus on the results of ab initio calculations of their structural, 

electronic, optical, elastic and thermal properties within the density functional theory.  

The outline of the paper is as follows. In section II we have given a brief review of the 

computational scheme used. The calculations of the structural, electronic and optical properties 

along with the computed elastic and thermal properties are described in section III; while the 

summary and conclusions are drawn in section VI. 

 
 

2. Computational method 
 

The calculations were done using FP-LAPW computational scheme [10,11] as 

implemented in the WIEN2K code [12]. The FP-LAPW method expands the Kohn-Sham orbitals 

in atomic like orbitals inside the muffin-tin (MT) atomic spheres and plane waves in the interstitial 

region. The Kohn-Sham equations were solved using the recently developed Wu-Cohen 

generalized gradient approximation (WC-GGA) [13, 14] for the exchange-correlation (XC) 

potential. It has been shown that this new functional is more accurate for solids than any existing 

GGA and meta-GGA forms. For a variety of materials, it improves the equilibrium lattice 

constants and bulk moduli significantly over local-density approximation [15] and Perdew-Burke-

Ernzerhof (PBE) [16] and therefore is a better choice. For this reason we adopted the new WC 

approximation for the XC potential in studying the present systems. Further for electronic structure 

calculations modified Becke–Johnson potential (mBJ) [17] as coupled with WC-GGA is used. 

The valence wave functions inside the atomic spheres were expanded up to l=10 partial 

waves. In the interstitial region, a plane wave expansion with RMTKmax equal to seven was used for 

all the investigated systems, where RMT is the minimum radius of the muffin-tin spheres and Kmax 

gives the magnitude of the largest K vector in the plane wave expansion. The potential and the 

charge density were Fourier expanded up to Gmax = 10. We carried out convergence tests for the 

charge-density Fourier expansion using higher Gmax values. The RMT (muffin-tin radii) are taken to 

be 2.2, 2.3, 1.8, 2.0 and 2.19 atomic unit (a.u.) for Cu, Tl, S, Se and Te respectively. The modified 

tetrahedron method [18] was applied to integrate inside the Brillouin zone (BZ) with a dense mesh 

of 5000 uniformly distributed k-points (equivalent to 405 in irreducible BZ) where the total energy 

converges to less than 10
−6

 Ry. 

 
 
3. Results and discussion 
 

3.1. Structural properties 

The ternary chalcopyrite semiconductor crystallizes in the chalcopyrite structure with 

space group dI 42  (
12

2dD ). The Cu atom is located at (0,0,0); (0,1/2,1/4), Ga at (1/2,1/2,0); 

(1/2,0,1/4) and X at (u,1/4,1/8); (-u,3/4,1/8); (3/4,u,7/8); (1/4,-u,7/8). Two unequal bond lengths 

dCu-X and dTl-X result in two structural deformations, first is characterized by u parameter defined as 

u=0.25+ (dCu-X
2 

– dTl-X
2
)/a

2
 where a is the lattice parameter in x and y direction, and the second 

parameter η=c/a, where c is lattice parameter in z direction which is generally different from 2a.  

To determine the best energy as a function of volume, we minimized the total energy of 

the system with respect to the other geometrical parameters. The minimization is done in two steps, 

first parameter u is minimized by the calculation of the internal forces acting on the atoms within 

the unit cell until the forces become negligible, for this MINI task is used which is included in the 

WIEN2K code. Second, the total energy of crystal is calculated for a grid of volume of the unit 

cell (V) and c/a values, where each point in the grid involves the minimization with respect to u. 
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Five values of c/a are used for each volume and a polynomial is then fitted to the calculated 

energies to calculate the best c/a ratio. The result is an optimal curve (c/a, u) as a function of 

volume. Further a final optimal curve of total energy is obtained by minimize energy verses [V, c/a 

(V), u (V)] by FPLAPW calculations and Murnaghan equation of state [19]. 

 Further we have used the calculated lattice constants for determination of inter atomic 

distance for A – C and B – C bonds by the following relations [8].  

 

x = 0.5 – ( c
2
 / 32 a

2
  –  1/16 )

1/2
;         dA-C = [a

2
x

2
 + (4a

2
 + c

2
) / 64]

1/2
; 

 

dB-C = [a
2
(1/2 – x)

2
 + (4a

2 
+ c

2
) / 64]

1/2
; d (in Å) = (dA-C + dB-C)/2  (1) 

 

We have also calculated the bulk modulus (B in GPa)by using the semi-empirical equation 

developed by Verma et al [20] for chalcopyrite semiconductors as follows, 

 
515.0

321 )(4056  dZZZB     (2) 

 

where d is the inter atomic distance and Z1Z2Z3 (product of ionic charges)= 12 for A
I
B

III
C2

VI
 

semiconductors. Table 1 presents the lattice constants and obtained along with the bulk modulus 

and its pressure derivative. 

 

 

3.2. Electronic and optical properties 

Fig.1 shows the band structures of the CuTlS2, CuTlSe2 and CuTlTe2. The calculations 

show that these compounds have semiconducting nature with the direct band gap of 0.113 eV, 

0.029 eV and 0.177 eV for CuTlS2, CuTlSe2 and CuTlTe2respectively.As clear from the figure 1 

for the band structure that the obtained electronic band gap is lower than the values predicted by 

experiments. Also because of the lack of the data available we are not able to compare the values 

obtained for CuTlSe2 and CuTlTe2. Deshpande et al, [21, 22] reported an estimate of the band gap 

of CuTlS2 by X-ray spectroscopic study. V. Estrella et al, [23] prepared the tetragonal CuTlS2 by 

chemical bath method at 300 C, the band gap found was 1.25 eV.  

 

 
(a)                                        (b)                                          (c) 

 

Fig. 1. Band structures of (a) CuTlS2, (b) CuTlSe2 and (c) CuTlTe2. 

 

 

To describe the general features of bonding in more detail the partial and total density for 

states (PDOS and DOS) for copper thallium dichalcogenides are calculated using the mBJ 

potential together with WC-GGA for the correlation (Fig.2). The upper valence band mainly 

consists of Cu 3d-states with a few contribution of X (X=S, Se and Te) p-states. The conduction 

bands near Fermi level are composed of strongly hybridized Tl 6s and X (X=S, Se and Te) p-states. 
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(a) 

 

 
 (b) 

 

 
 (c) 

 

Fig. 2.  The calculated partial and total density of states (DOS) for (a) CuTlS2,  

(b) CuTlSe2 and (c) CuTlTe2. 

 

 

The linear response to an external electromagnetic field with a small wave vector is 

measured through the complex dielectric function,  

 

ε(ω)= ε1(ω)+ iε2(ω)     (3) 
 

which is related to the interaction of photons with electrons[24]. The imaginary part ε2(ω)of the 

dielectric function could be obtained from the momentum matrix elements between the occupied 

and unoccupied wave functions and is given by [25] 
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The real part ε1(ω) can be evaluated from ε2(ω)using the Kramer-Kronig relations and is 

given by[26] 
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All of the other optical properties, including the absorption coefficient α(x), the refractive 

index n(x), the extinction coefficient k(x), and the energy-loss spectrum L(x), can be directly 

calculated from ε1(ω) and ε2(ω)[25,27]. 

Fig.3 displays the real and imaginary parts of the electronic dielectric function ε(ω) 

spectrum for the photon energy ranging up to 40 eV, respectively. As it clear from the optical 

spectra of real part of the electronic dielectric function ε1(ω) exhibit anisotropy in the different 

directions (along basal-plane and z-axis) with a very small difference (0.0246, 0.2484  and 0.2407 

eV for CuTlS2, CuTlSe2 and CuTlTe2 respectively) in the static limit. The imaginary part of the 

dielectric constant ε2(ω) is the fundamental factor of the optical properties of a material. Fig.3 

displays the imaginary (absorptive) part of the dielectric function ε2(ω)  up to 40 eV.  
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Fig. 3.  The calculated real ε1(ω) and imaginary ε2(ω) parts of complex dielectric constant   

for (a) CuTlS2, (b) CuTlSe2 and (c) CuTlTe2. 

 

 

Fig.4 presents the refractive index n (ω) along with the extinction coefficient k (ω). The 

refractive index spectrum shows an anisotropic behavior (∆n(0 eV)=0.00406, 0.17586, 0.0337 for 

CuTlS2, CuTlSe2 and CuTlTe2, respectively)hence only the averages are listed in Table 2.Fig.4 

also show extinction coefficient k (ω) is related to the decay or damping of the oscillation 
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amplitude of the incident electric field, the extinction coefficient k (ω) decreases with increasing 

the incident photon energy. The refractive index and extinction coefficient both oscillate for all 

chosen materials. 

 
Table 2. The calculated minimum refractive index (n) and dielectric constant for CuTlS2, CuTlSe2 and 

CuTlTe2 compared with other experimental and theoretical data. 

 

Crystals n calculated (eq. 6) n this work  this work 

CuTlS2 2.736 3.26 10.6 

CuTlSe2 3.000 3.30 10.9 

CuTlTe2 3.404 3.58 12.8 

 

 

     
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

R
ef

ra
ct

iv
e 

in
d
ex

Energy (eV)

 E  c

 E || c

CuTlS
2

     
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

E
x
ti

n
ct

io
n
 c

o
ef

fi
ci

en
t

Energy (eV)

 E  c

 E || c

CuTlS
2

 
(a) 

 

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

R
ef

ra
ct

iv
e 

in
d
ex

Energy (eV)

 E  c

 E || c

CuTlSe
2

      
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

0.0

0.5

1.0

1.5

2.0

E
x
ti

n
ct

io
n
 C

o
ef

fi
ci

en
t

Energy (eV)

 E  c

 E || c

CuTlSe
2

 
(b) 

 

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

R
ef

ra
ct

iv
e 

in
d
ex

Energy (eV)

 E  c

 E || c

CuTlTe
2

     

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
0.0

0.5

1.0

1.5

2.0

2.5

E
x
ti

n
ct

io
n
 c

o
ef

fi
ci

en
t

Energy (eV)

 E  c

 E || c

CuTlTe
2

 
(c) 

 
Fig. 4.  The calculated refractive index and extinction coefficient for (a) CuTlS2,  

(b) CuTlSe2 and (c) CuTlTe2. 

 

 

The refractive index (n) of these compounds can also be evaluated by using the relation 

given by Verma et al [28] for chalcopyrites as follows, 
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215.0

321 )(31.0 dZZZn       (6)  

 
Where d is the inter atomic distance and Z1Z2Z3 (product of ionic charges) =12 for A

I
B

III
C2

VI
 

semiconductors. 

The calculated optical reflectivity R () is displayed in Fig.5. The maximum reflectivity 

occurs in ultra-violet region, 7.58-11.49 eV for CuTlS2, 6.76-10.84 eV for CuTlSe2 and 5.78-9.78 

eV for CuTlTe2. Also, the positions of the peaks also shift to lower energy regions while moving 

from S to Te. 
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Fig. 5.  The calculated reflectivity (R ()) for (a) CuTlS2, (b) CuTlSe2 and (c) CuTlTe2. 

 

 

Optical conductivity parameters are closely related to the photo-electric conversion 

efficiency and mainly used to measure the change caused by the illumination. Fig.6 shows the 

optical conductivities of CuTlS2, CuTlSe2 and CuTlTe2 respectively. It’s clear that these materials 

have a small values of conductivity in the visible light region (1.65 eV-3.1 eV), but have high 

values in the ultra violet region. 
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Fig. 6.  The calculated photoconductivity (())for (a) CuTlS2, (b) CuTlSe2 and (c) CuTlTe2. 

 

 

3.3. Elastic properties 

The elastic properties of a solid are among the most fundamental properties that can be 

predicted from the first-principles ground-state total-energy calculations. The determination of the 

elastic constants requires knowledge of the curvature of the energy curve as a function of strain for 

selected deformations of the unit cell. The deformations [29] are shown in Table 3 and chosen 

such that the strained systems have the maximum possible symmetry. The system has been 

optimized for each deformed cell geometry. The WIEN2K package [12] facilitates this task by 

providing a force-driven optimization of the internal cell geometry. The elastic stiffness tensor of 

chalcopyrite compounds has six independent components because of the symmetry properties of 

the 
12

2dD  space group, namely C11, C12, C13, C33, C44 and C66 in Young notation. The calculated 

elastic constant for the tetragonal phase of Cu-chalcopyrite’s are listed in Table 4& 5.  In general, 

our results are in good agreement with the experimental data, in particular if we consider, shear 

constants (C44 and C66) appear to be no worse than the rest of the elastic constants, even though the 

inner strain component is particularly difficult in those constants. The comparison with other 

theoretical calculations also shows an important dispersion of values. The calculated elastic 

constants fulfill the mechanical stability criteria for the tetragonal systems: 

 
C11> |C12|, (C11+C12) C33> 2C13

2
, C44> 0, and C66> 0 

 
In order to check the internal consistency of calculated elastic constants we can compare 

the bulk modulus reported on Table 1 with an equivalent combination of the Cij’s. 
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Table 1. Structural equilibrium parameters, a, c, u, d, B and B calculated in WC-GGA. 

 

Crystals a (Å) c (Å) u d (Å) Eq. (1) B (GPa) B 

CuTlS2 5.694, 5.58
a
 11.38, 11.16

a
 0.250 2.466 62, 65

b
 5.46 

CuTlSe2 5.950, 5.83
a
 11.97, 11.6

a
 0.246 2.582 52, 51

b
 5.02 

CuTlTe2 6.368 12.63 0.254 2.750 44, 37
b
 5.19 

a
Reference [8]; 

b
 equation (2) 

 

 

Table 3. The lattice parameters of the deformed tetragonal unit cell, the expression relating the  and  
variables, the finite Lagrangian strain tensor (Voigt notation) and the value of the second derivative, 

(1/2V)(d
2
E/d2

), in terms of the elastic constants ( being deformation coordinate and E the energy). 
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Table 4. Elastic constants Cij (in GPa) of the Cu-chalcopyrites compared with available data. 

 

Solids C11 C12 C13 C33 C44 C66 

CuTlS2 70.4 52.9 46.9 67.9 33.1 27.3 

CuTlSe2 60.8, 

95
c
 

40.9, 

59.5
 c
 

44.0, 

56.5
 c
 

70.9, 

89.2
 c
 

24.4, 

32.7
 c
 

23.2, 

29.7
 c
 

CuTlTe2 52.8 36.8 36.2 53.3 20.9 20.1 
c
equation (27). 

 
Table 5. Elastic moduli of the Cu-chalcopyrites. 

 

Solids B (GPa) G (GPa) Y (GPa)  a 

(GPa
-1

) 

c (GPa
-1

) B/G 

CuTlS2 56, 65
b
 20 53 0.34 0.0053 0.0074 2.68 

CuTlSe2 50, 51
b
 17 46 0.34 0.0081 0.0041 2.62 

CuTlTe2 35, 37
b
 16 43 0.29 0.0079 0.0080 2.36 

b
 equation (2) 

 

Bulk modulus should be bound from above by the Voigt approximation (uniform strain 

assumption) [30, 31]: 

 

)422(
9

1
13123311 CCCCBV      (7) 

 

Reuss found lower bounds for all lattices [32] 
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Voigt and Reuss approximations provide, in fact, an estimation of the elastic behaviour of 

an isotopic material, for instance a polycrystalline sample. Such a medium would have a single 

shear constant, G, upper bounded by 

 

)61233(
30

1
66441211 CCCCMGV     (9) 

and lower bounded by  
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where
2

13331211

2 2)( CCCCC   

In the Voigt-Reuss-Hill approximation [33], the B and G of the polycrystalline material 

are approximated as the arithmetic mean of the Voigt and Reuss limits: 

 

2

RV BB
B


       (11) 

 

2

RV GG
G


       (12) 

 

Finally the Poisson ratio and the Young modulus are obtained as 

 

)3(2

23
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


      (13) 

 

GB
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Y




3

9
      (14) 

 

Using the single crystal Cij data, one can evaluate the linear compressibilities along the 

principles axis of the lattice. For the tetragonal structure, the linear compressibilities a and c 

along the a- and c-axis respectively are given in term of elastic constants by the following relations; 
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a
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Pugh [34] proposed that the resistance to plastic deformation is related to the product Gb, 

where ‘b’ is the Burgers vector, and that the fracture strength is proportional to the product Ba, 

where ‘a’ corresponds to the lattice parameter. As b and a are constants for specific materials, the 

Ba/Gb can be simplified into B/G. This formula was recently exploited in the study of brittle vs 
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ductile transition in intermetallic compounds from first-principles calculations [35, 36]. A high 

B/G ratio is associated with ductility, whereas a low value corresponds to the brittle nature. The 

critical value which separates ductile and brittle material is around 1.75, i.e., if B/G > 1.75, the 

material behaves in a ductile manner otherwise the material behaves in a brittle manner. We have 

found that B/G ratios are 2.80, 2.88 and 2.10 for CuTlS2, CuTlSe2 and CuTlTe2 respectively, 

classifying these materials as ductile. Consequently, the Ba/Gb reflects the competition between 

the shear and cohesive strengths at the crack tip of fracture.  

 

3.4. Thermal properties 
To investigate the thermodynamic properties of Cu-chalcopyrite, we have used Gibbs 

program. The obtained set of total energy versus primitive cell volume determined in previous 

section has been used to derive the macroscopic properties as a function of temperature and 

pressure from the standard thermodynamic relations. Gibbs program is based on the quasi-

harmonic Debye model [37], in which the non-equilibrium Gibbs function G
*
(V; P, T) can be 

written in the form of: 
 

];[)(),;(* TAPVVETPVG Dvib 
   (17) 

 

where E(V) is the total energy per unit cell, PV corresponds to the constant hydrostatic pressure 

condition, θD is the Debye temperature, and Avib is the vibrational term, which can be written using 

the Debye model of the phonon density of states as [38,39]: 

 



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


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










T
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T
nkTTA T

Dvib






)1ln(3
8

9
];[

   (18) 

 

where n is the number of atoms per formula unit, D(θ/T) represents the Debye integral, and for an 

isotropic solid, θ is expressed as [38]: 

 

 
M

B
fnV

k

S
D 

3
1

2
1

26








     (19)

 

 

M being the molecular mass per unit cell and BS the adiabatic bulk modulus, approximated 

by the static compressibility [37]: 

 

2

2 )(
)(

dV

VEd
VVBBS 

     (20)

 

 

f (σ) is given by Refs. [37,40, 41]; where σ is the Poisson ratio. 

Therefore, the non-equilibrium Gibbs function G*(V; P, T) as a function of (V; P, T) can 

be minimized with respect to volume V, 

 

0
,;(

,












 

TP
V

TPVG
     (21) 

 

By solving Eq. (21), one can obtain the thermal equation of state (EOS) V(P, T). The heat 

capacity CV and the thermal expansion coefficient α are given by [33], 
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VB

C

T

V
 

      (24)

 

where γ is the Grüneisen parameter, which is defined as: 

 

Vd

Vd

ln

)(ln
 

      (25) 

 

Through the quasi-harmonic Debye model, one could calculate the thermodynamic 

quantities of any temperatures and pressures of compounds from the calculated E–V data at T = 0 

and P = 0. 

We can also provide a prediction of the hardness (H in GPa) and six independent elastic 

constants (Cij in GPa)by using the semi-empirical equations developed by Verma and co-

authors[20, 42], 

H = K B
K+1

      (26) 

 

B = Bulk modulus; K = 0.5 for A
I
B

III
C2

VI 

 
15.0

321
)( 












ZZZ

Tk
AC mB

ijij  (i = 1, 3, 4, 6 and j = 1, 2, 3, 4, 6)  (27) 

 

A11 = 160, A12 = 100, A13 = 95, A33 = 150, A44 = 55, A66 = 50 

 

whereZ1,Z2 and Z3are the ionic charges on the A, B and C2, respectively and the value of product 

of ionic charge is 12 for A
I
B

III
C2

VI
 [42]. 

As the melting point of CuTlSe2 is 678 K [8] so the temperature range from 0 K to 800 K 

for CuTlS2, 0 K to 600 K for CuTlSe2 and 0 to 500 K for CuTlTe2 have been taken to determine 

the thermodynamic properties through the quasi-harmonic Debye model. The pressure effects are 

studied in the 0–8GPa range. Fig.7 presents relationships between the equilibrium volume V 

(bohr
3
) and pressure at various temperatures. Meanwhile, V increases slightly as the temperature 

increases, whereas the equilibrium volume V decreases dramatically as the pressure P increases at 

a given temperature. This account suggests that the CuTlX2 (X= S, Se, Te) under loads turns to be 

more compressible with increasing pressure than decreases temperature. Furthermore, It is noted 

that the relationship between the bulk modulus and temperature for CuTlX2 (X= S, Se, Te) in Fig.8. 

The bulk modulus slightly decreases with increasing temperature at a given pressure and increases 

with increasing pressure at a given temperature. 

 

 

 

 

 



13 

 

0 200 400 600 800

1140

1160

1180

1200

1220

1240

1260

1280

1300

1320

1340

V
 (

b
o
h
r3

)

Temperature (K)

 0 GPa  2 GPa

 4 GPa  6 GPa

 8 GPa

0 200 400 600

1280

1300

1320

1340

1360

1380

1400

1420

1440

1460

1480

1500

1520

1540

V
 (

b
o
h
r3

)

Temperature (K)

 0 GPa  2 GPa

 4 GPa  6 GPa

 8 GPa

 
(a)                                                       (b) 

0 100 200 300 400 500

1520

1560

1600

1640

1680

1720

1760

1800

1840

V
 (

b
o
h
r3

)

Temperature (K)

 0 GPa  2 GPa

 4 GPa  6 GPa

 8 GPa

 
(c) 

Fig. 7. Volume vs temperature at various pressures for (a) CuTlS2 (b) CuTlSe2 and (c) CuTlTe2. 
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Fig. 8. Bulk modulus vs temperature at various pressures for (a) CuTlS2 (b) CuTlSe2 and (c) CuTlTe2. 
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The variation of the Debye temperature D (K) as a function of pressure and temperature 

illustrated by our results is displayed in Fig.9. With the applied pressure increasing, the Debye 

temperatures are almost linearly increasing. Fig.10 shows the volume thermal expansion 

coefficient (10
-5

/K) of CuTlX2 (X= S, Se, Te) at various pressures, from which it can be seen that 

the volume thermal expansion coefficient  increases quickly at a given temperature particularly at 

zero pressure below the temperature of 300 K. After a sharp increase, the volume thermal 

expansion coefficient of the CuTlX2 (X= S, Se, Te) is nearly insensitive to the temperature above 

300 K due to the electronic contributions.  
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Fig. 9. Debye temperature vs pressure at various temperatures for (a) CuTlS2 

(b) CuTlSe2 and (c) CuTlTe2. 
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Fig. 10. Thermal expansion coefficients vs temperature at various pressures for  

(a) CuTlS2 (b) CuTlSe2 and (c) CuTlTe2. 

 

 

As very important parameters, the heat capacities of a substance not only provide essential 

insight into the vibrational properties but are also mandatory for many applications. Our 

calculation of the heat capacities CP and CV of CuTlS2, CuTlSe2and CuTlTe2verses temperature at 

pressure range 0-8GPa are shown in the following Figs.11 to13 respectively. From these figures, 

we can see that the constant volume heat capacity CV and the constant pressure capacity CP are 

very similar in appearance and both of them are proportional to T
3
 at low temperatures. At high 
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temperatures, the anharmonic effect on heat capacity is suppressed; which is called Dulong-Petit 

limit, with the increasing of the temperature, whereas CP increases monotonically with the 

temperature. Fig.14 shows the entropy vs temperature at various pressures for CuTlX2 (X= S, Se, 

Te). The entropies are variable by power exponent with increasing temperature but the entropies 

are higher at low pressure than that at high pressure at same temperature. The Gruneisen parameter 

 is another important quantity for the materials. In Fig.15, we have shown the values of Gruneisen 

parameter  at different temperatures and pressures. It shows the value  increases as the 

temperature increases at a given pressure and decreases as the pressure increases at a given 

temperature.  
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Fig. 11. Heat capacity vs temperature at various pressures for CuTlS2. 
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Fig. 12. Heat capacity vs temperature at various pressures for CuTlSe2. 

 

 

0 200 400
0

50

100

150

200

250

C
P
 (

J/
m

o
l.

K
)

Temperature (K)

 0 GPa

 2 GPa

 4 GPa

 6 GPa

 8 GPa

  
0 100 200 300 400 500

0

50

100

150

200

C
V
 (

J/
m

o
l.

K
)

Temperature (K)

 0 GPa

 2 GPa

 4 GPa

 6 GPa

 8 GPa

  
 

Fig. 13. Heat capacity vs temperature at various pressures for CuTlTe2. 
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Fig. 14. Entropy vs temperature at various pressures for (a) CuTlS2 (b) CuTlSe2 and (c) CuTlTe2. 
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Fig. 15. Gruneisen parameter vs temperature at various pressures for (a) CuTlS2 (b) CuTlSe2 and (c) 

CuTlTe2. 
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In Fig.16, we have shown the values of hardness (H in GPa) at different temperatures and 

pressures. It shows the hardness decreases as the temperature increases at a given pressure and 

increases as the pressure increases at a given temperature. The values of hardness are reported for 

the first time at different pressure and temperature. Table 6 present the thermal properties such as 

isothermal bulk modulus, hardness, Gruneisen parameter, Debye temperature and thermal 

expansion coefficient at 300 K. 
 

Table 6.   Selection of thermal properties at 300 K; isothermal bulk modulus (B in GPa), Hardness (H in 

GPa), Gruneisen parameter (), Debye temperature (D in K) and thermal expansion coefficient ( in 10
-

5
/K). 

 

Solids B (GPa) H (GPa)  D (K)  (10
-5

/K) 

CuTlS2 65 2.54  1.86 295, 273
d
 4.87 

CuTlSe2 51 1.80 1.87 238, 230
d
 5.04 

CuTlTe2 46 1.52 1.87 209 5.10 
d
Reference [43] 
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Fig. 16. Hardness vs temperature at various pressures for (a) CuTlS2 

(b) CuTlSe2 and (c) CuTlTe2. 

 

 
4. Conclusion 
 

Employing the FP-LAPW approach based on density functional theory, within the WC-

GGA as coupled with mBJ functional, we studied the structural, electronic, optical, elastic and 

thermal properties of the CuTlX2 (X = S, Se and Te). All the considered semiconductors have a 

direct band gap (-). We compared electronic, optical and elastic properties with the available 

experiment and theoretical data. Thermal properties such as Gruneisen parameter, volume 

expansion coefficient, bulk modulus, specific heat, entropy, debye temperature and hardness are 

calculated successfully at various temperatures and pressures, and trends are discussed. To the best 
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of our knowledge, most of the investigated parameters are reported for the first time and 

hoped to stimulate the succeeding studies.  
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