Digest Journal of Nanomaterials and Biostructures Vol. 7, No 1, January-March 2012, p. 193 - 197

ON THE INDEPENDENCE POLYNOMIALS OF CERTAIN MOLECULAR
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The independence polynomial of a molecular graph G is the polynomial
1(G,x) = Zik Xk, where i) denote the number of independent sets of cardinality K in

G . In this paper, we consider specific graphs denoted by G(m) and G1(m)Gy and

obtain formulas for their independence polynomials which are in terms of Jacobsthal
polynomial. Also we compute the independece polynomal of another kind of graphs.
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1. Introduction

A simple graph G =(V,E) is a finite nonempty set V(G) of objects called vertices
together with a (possibly empty) set E(G) of unordered pairs of distinct vertices of G called
edges. In chemical graphs, the vertices of the graph correspond to the atoms of the molecule, and
the edges represent the chemical bonds.

An independent set of a graph G is a set of vertices where no two vertices are
adjacent. The independence number is the size of a maximum independent set in the graph. For a
graph G with independence [, let i) denote the number of independent sets of cardinality k in

G (k=0,1,.., /). The independence polynomial of G, I(G, X) :Z'kg:dk xk, is the generating

polynomial for the independent sequence (ig iy, Ip, ..., 1 ’5) ([3]). The path P, on 4 vertices, for

example, has one independent set of cardinality 0 (the empty set), four independent sets of
cardinality 1, and three independent sets of cardinality 2; its independence polynomial is then

1(Py, X) =1+ 4X + 3x2.

Hoede and Li [5] obtained the following recursive formula for the independence
polynomial of a graph.

Theorem 1. For any vertex v ofagraph G, 1(G,x) =1(G -V, x) + xI(G —[V], X)
where [V] is the closed neighberhood of v, contains of v, together with all vertices incident with
V.
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Let us observe that if G and H are isomorphic, then |(G, X) =I1(H, X) . The converse is
not generally true. For Two graphs G and H are independent equivalent, written G ~ H , if
I1(G,x)=I1(H,X). A graph G is independent unique, if 1(H, x) =1(G, x) implies that H = G.
Let [G] denote the independent equivalence class determined by the graph G under the
equivalence relation~ . Clearly, G is independent unique if and only if [G] ={G}. A zero of
1(G, X) is called a independence zero of G .

The corona of two graphs Gq and Gy, as defined by Frucht and Harary in [4], is the
graph Gq o Goformed from one copy of Gq and |V (Gq) |copies of Go, where the ith vertex of
G1 is adjacent to every vertex in the ith copy of G, . The corona G o K4, in particular, is the graph
constructed from a copy of G, where for each vertex VeV (G) , anew vertex V and a pendant

edge W' are added.
In Section 2, we study Jacobsthal polynomial and introduce two graphs with specific

structures denoted by G(m) and Gy(m)Gy. Using the results related to Jacobsthal polynomial, we
compute the independence polynomials of G(m) and G4(mM)G in Section 3.

2. Jacobsthal polynomial

Jacobsthal polynomials, Jp,(X), named after the German mathematician E. Jacobsthal are
related to Fibonacci polynomials. They are defined by

In(¥) =Jn_a(X) +XxIn_o(X)

where J1(X) =Jo(X) =1 (see [6], p.469).

In this section, we shall find the zeros of J,(X). First, we need the following two lemmas

to obtain a solution of Jacobsthal polynomials.

n-1 . .
Lemma 1. For any real number u, J(u+u) = > (1+u) (~u)"
i=0
Proof. It is clear that the result holds when n=2. Now let n > 3. By induction, we have
Jn(u2 +U) :Jn_l(u2 +U) +(u2 + u)Jn_z(u2 +U)

n-2 . . n-3 . .
=3 (@0 U ) Y @) (w3
i=0 i=0

n-2 . . h=3 ) .
- Z(:H' u)l(_u)n—z—l _ Z(l+ u)|+1(_u)n—2—|
i=0 i-0
n-3 . .
=(Lru)" 2+ Y (@) ()" -
i-0
n-3 . .
Z(1+ u)|+1(_u)n—2—|
i-0
n-3 ) .
=(1+u)" 24+ > (@ u) ()"
i0

n-1 . .
=3 (1+u) (~u" -
i=0
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Corollary 1. For any real number u, (1 +1)J (% + u) =(1+ u)" — (-u)".

Proof. The result follows from Lemma 1 by using the identity
n-1. .
a"—b" =(a- b)[Za'b”"l"' J
i=0
fora=l+uU,b=-u.g

Lemma 2. ([2], p.64) For real numbers a, b and positive integer n,

n-1
2
(a—b)]‘[(a%bz—zabcos@j; nis odd,
a" -b" = s=l "

n-2

2
(a—b)(a+b) I_I(a2 +b?-2ab cos@j; nis even.
n

s=1
|-t
o 2 X
Theorem 2. For any positive integer n, J,(X) = H 2X + 1+ 2Xcos— |.
n
s=1

2_p2

Proof. Ifput a=1+U, b =—u, we have a—b=a =1+ 2, therefore by using Lemma 2

and Corollary 1, for any real number U # —5 ,

n-1
L7 o
Inw?+u=1] [m%zu +1+2(u2+u)cosT”j.
s=1

. 1 . 1
Observe that for any real number X with X > —Zr , there is a real number U # —— such that

Ln—l
2 1 2 Y4
U + U =X. Thus for each real number with X > 2 Jn(x)= | | 2X +14+2Xcos— |.
n
s=l

Since J,(X) is a polynomial with degree less than n, the above equality also holds for any real

1
number X < e Thus the result is obtained. gy

3. Independence polynomial of certain graphs

In this section we consider some specific graphs and compute their independence
polynomial (see [1]). Let Py, 1 be a path with vertices labeled by Yg, Y1,---, Yy » for m >0 and

let G be any graph. Denote by GVO(m) (or simply G(m), if there is no likelihood of confusion) a
graph obtained from G by identifying the vertex Vg of G with an end vertex Yg of Py 1 (see
Figure 1). For example, if G is a path P>, then G(m) =Py(m) is the path Py, . Also, we denote
the graph obtained from graphs G and G, by adding a path P, from a vertex in G4 to a vertex
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of Gy, by G1(m)G,. (Figure 1).

vy = U ‘ 7 Y: Ym-1 " Ym

Fig.1. Graphs G(m) and G1(m)Go, respectively.

Theorem 3. Let n>2 be integer. Then, the independence polynomial of G(n) is
1(G(n),x) =, () 1(G(1) X) + XI 11X (G, ).

Proof. Proof by induction on n. Since J1(X) =Jo(X) =1, the result is true for N =2 by Theorem
1. Now suppose that the result is true for all natural numbers less than n and prove it for n. By
using Theorem 1 for V =Y, , and induction hypothesis, we have

1(G(n),x) =1(G(n —1),x) + xI(G(n —2),x) =

=Jn(91(G(1) X) + xI -2 (G, X)
+X(In_2(NGL)X) + X p_a(1(G, %)
=(In-1(¥) + XIn20NG(1) %) + X(In-2(X) + XxIn_3(NI(G, %)
=Jn()1(G(1)X) + XIn1(N) (G, ).

The following theorem gives the formula for computing the independence polynomial of graphs
G4(m)G as shown in Figure 1 :

Theorem 4. Let n >5 be integer. The independence polynomial of G4(n)Gy is
1(Gy(N)G2, X) =
1(G(1) ) 1(G2(2) X) I n—2(X) + X(1(G1(1) ) (G2, X)
+1(G1, ) 1(G2(1). X)) n-3(x) + X*1(G1, ) 1(G, ) I n_a(X).

Proof. Proof by induction on n. If n =5, then by Theorems 1 and 3, and induction hypothesis, we
have

1(G1(5)G2, X) =1(G(1) ) 1(Go(3).%) + X(1(G, ) 1(G2(2).X) =
=(1+ ) 1(G1(1) X 1(Ga(1).X) + X(1(G1(1) X) 1(G2, X)
+1(Gy, X)1(G(1),%)) + X21(Gq, X)1(Gop, X).

So the theorem is true for N =5. Now suppose that the result is true for less than n and we prove
it for n. By Theorems 1 and 3, and induction hypothesis, we have

1(Gy(n)G2, X) =
1(G1(1)X)1(G2(n—2).X) + X(1(Gg, Y1 (G2(n - 3),x) =
1(G1(1) ) 1(G2(1) X) I n-2(3 + x(1(G1(1) ) 1(G2, )



197

+ 1(Gy, )1(G2(1) X)) p-3(x¥) + X1 (Gy, )1(G2, ) I p_a(¥)- -

Theorem 3 implies that all forms of Gy(m)Gy have the same independence polynomials.
As application of Theorem 3, we obtain the following formula:

Corollary 2.
1. The independence polynomial of path Py, is
|+l
2 P
1Py, %) =Jna209 = ] (Zx + 1+ 2Xcos J
s n+2

2. The independence polynomial of cycle Cp, (n>2) is
1(Chy X) =JIna(X) + xIpa(X).

Proof.
1. By using Theorem 1, for G =K1, we have

1 (P, X) =1(Kq(n), X) =3 n () 1(K1(2) %) + xI n1(X) 1 (K1, X)
=(1+2) I (X) + xI ,1(X) + x2J n-1(x)
=Jns209 + XJn1a(X)

=Jn+3(%).
So we have the result.
2. It follows from Theorems 1 and Part 1. gy
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