
Digest Journal of Nanomaterials and Biostructures                 Vol. 7, No 1, January-March 2012, p. 193 - 197 
 
 

 
 

ON THE INDEPENDENCE POLYNOMIALS OF CERTAIN MOLECULAR  
GRAPHS 

 
MOHAMMAD H. REYHANI, SAEID ALIKHANIa, ROSLAN HASNIb*  
Department of Mathematics, Faculty of Science, Islamic Azad University, Yazd 
Branch, Yazd, Iran 
aDepartment of Mathematics, Yazd University   89195-741, Yazd, Iran  
bSchool of Mathematical Sciences, Universiti Sains Malaysia 
11800 USM, Penang, Malaysia 
 

 
The independence polynomial of a molecular graph G  is the polynomial 

k
k xixGI =),( , where ki  denote the number of independent sets of cardinality k  in 

G . In this paper, we consider specific graphs denoted by )(mG  and 21 )( GmG  and 

obtain formulas for their independence polynomials which are in terms of Jacobsthal 
polynomial. Also we compute the independece polynomal of another kind of graphs. 
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1.  Introduction 
  
  A simple graph ),(= EVG  is a finite nonempty set )(GV  of objects called vertices 

together with a (possibly empty) set )(GE  of unordered pairs of distinct vertices of G  called 
edges. In chemical graphs, the vertices of the graph correspond to the atoms of the molecule, and 
the edges represent the chemical bonds. 

    An  independent set of a graph G  is a set of vertices where no two vertices are 
adjacent. The  independence number is the size of a maximum independent set in the graph. For a 
graph G  with independence  , let ki denote the number of independent sets of cardinality k in 

G  ( ,0,1,= k ). The  independence polynomial of G , ,=),(
0=

k
kk

xixGI 
 is the generating 

polynomial for the independent sequence ),,,,( 210 iiii   ([3]). The path 4P  on 4 vertices, for 

example, has one independent set of cardinality 0 (the empty set), four independent sets of 
cardinality 1, and three independent sets of cardinality 2; its independence polynomial is then 

2
4 341=),( xxxPI  . 

  
  Hoede and Li [5] obtained the following recursive formula for the independence 

polynomial of a graph. 
    
Theorem 1 .  For any vertex v  of a graph G , )],[(),(=),( xvGxIxvGIxGI   

where ][v  is the closed neighberhood of v , contains of v , together with all vertices incident with 
v .   
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Let us observe that if G  and H  are isomorphic, then ),(=),( xHIxGI . The converse is 
not generally true. For Two graphs G  and H  are independent equivalent, written HG ~ , if 

),(=),( xHIxGI . A graph G  is independent unique, if ),(=),( xGIxHI  implies that GH  . 

Let ][G  denote the independent equivalence class determined by the graph G  under the 

equivalence relation ~ . Clearly, G is independent unique if and only if }{GG =][ . A zero of 

),( xGI  is called a  independence zero of G .   

The corona of two graphs 1G  and 2G , as defined by Frucht and Harary in [4],  is the 

graph 21 GG  formed from one copy of 1G  and |)(| 1GV copies of 2G , where the ith vertex of 

1G  is adjacent to every vertex in the ith copy of 2G . The corona 1KG  , in particular, is the graph 

constructed from a copy of G , where for each vertex )(GVv , a new vertex v  and a pendant 

edge 'vv  are added. 
    In Section 2, we study Jacobsthal polynomial and introduce two graphs with specific 

structures denoted by )(mG  and 21 )( GmG . Using the results related to Jacobsthal polynomial, we 

compute the independence polynomials of )(mG  and 21 )( GmG  in Section 3.  
 
2.  Jacobsthal polynomial  
 
 Jacobsthal polynomials, )(xJn , named after the German mathematician E. Jacobsthal are 

related to Fibonacci polynomials. They are defined by  
)()(=)( 21 xxJxJxJ nnn    

where 1=)(=)( 21 xJxJ  (see  [6], p.469).   

 In this section, we shall find the zeros of )(xJn . First, we need the following two lemmas 

to obtain a solution of Jacobsthal polynomials. 
  

Lemma 1 .  For any real number u , .)()(1=)( 1
1
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
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  Proof. It is clear that the result holds when 2=n . Now let 3n . By induction, we have   
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Corollary 1 .  For any real number u , .)()(1=)(1)(2 2 nn
n uuuuJu   

  
 
 Proof. The result follows from Lemma 1 by using the identity  

,)(= 1
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nn bababa  

for ua 1= , ub = . ▄ 
  
Lemma 2 .  ( [2], p.64) For real numbers a , b  and positive integer n , 
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 Theorem 2 .  For any positive integer n , .
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   Proof.  If put ua 1= , ub = , we have ubaba 21== 22  , therefore by using Lemma 2 

and Corollary 1, for any real number 
2

1
u , 
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Observe that for any real number x  with 
4

1
> x , there is a real number 

2

1
u  such that 

xuu =2  . Thus for each real number with 
4

1
> x  , .
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Since )(xJ n  is a polynomial with degree less than n , the above equality also holds for any real 

number 
4

1
x . Thus the result is obtained.  ▄ 

 
3.  Independence polynomial of certain graphs 
 
In this section we consider some specific graphs and compute their independence 

polynomial (see [1]).  Let 1mP  be a path with vertices labeled by myyy ,,, 10  , for 0m  and 

let G  be any graph. Denote by )(0 mGv  (or simply )(mG , if there is no likelihood of confusion) a 

graph obtained from G  by identifying the vertex 0v  of G  with an end vertex 0y  of 1mP  (see 

Figure 1). For example, if G  is a path 2P , then )(=)( 2 mPmG  is the path 2mP . Also, we denote 

the graph obtained from graphs 1G  and 2G  by adding a path mP  from a vertex in 1G  to a vertex 
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of 2G , by 21 )( GmG . (Figure 1). 
 

        
Fig.1.  Graphs )(mG  and 21 )( GmG , respectively. 

  
  
Theorem 3 .  Let 2n  be integer. Then, the independence polynomial of )(nG  is  

).,()()(1),()(=)),(( 1 xGIxxJxGIxJxnGI nn   

  
Proof. Proof by induction on n . Since 1=)(=)( 21 xJxJ , the result is true for 2=n  by Theorem 

1. Now suppose that the result is true for all natural numbers less than n  and prove it for n . By 

using Theorem 1 for nyv = , and induction hypothesis, we have  

=)2),(()1),((=)),(( xnGxIxnGIxnGI   

),()()(1),()(= 21 xGIxxJxGIxJ nn    

),()()(1),()(( 32 xGIxxJxGIxJx nn    

),())()(()(1),())()((= 3221 xGIxxJxJxxGIxxJxJ nnnn    

).,()()(1),()(= 1 xGIxxJxGIxJ nn  ▄ 

 
  The following theorem gives the formula for computing the independence polynomial of graphs 

21 )( GmG  as shown in Figure 1 : 
  
Theorem 4 .  Let 5n  be integer. The independence polynomial of 21 )( GnG  is  

 
),()(1),(()()(1),()(1),(

=),)((
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xGIxGIxxJxGIxGI

xGnGI

n 
 

 ).(),(),()())(1),(),( 421
2

321 xJxGIxGIxxJxGIxGI nn    

   
Proof. Proof by induction on n . If 5=n , then by Theorems 1 and 3, and induction hypothesis, we 
have  
 =)(2),(),(()(3),()(1),(=),(5)( 212121 xGIxGIxxGIxGIxGGI   

 ),()(1),(()(1),()(1),()(1= 2121 xGIxGIxxGIxGIx   

 ).,(),())(1),(),( 21
2

21 xGIxGIxxGIxGI   

 So the theorem is true for 5=n . Now suppose that the result is true for less than n  and we prove 
it for n . By Theorems 1 and 3, and induction hypothesis, we have  
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).(),(),()())(1),(),( 421
2

321 xJxGIxGIxxJxGIxGI nn   ▄ 

 
Theorem 3 implies that all forms of 2)(1 GmG  have the same independence polynomials. 
As application of Theorem 3, we obtain the following formula: 
  
Corollary 2 .    
 1.  The independence polynomial of path nP  is  

.
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 2.  The independence polynomial of cycle nC  2)( n  is  

).()(=),( 11 xxJxJxCI nnn    

 
Proof.   
1.  By using Theorem 1, for 1=KG , we have  

),()()(1),()(=)),((=),( 11111 xKIxxJxKIxJxnKIxPI nnn  

)()()()2(1= 1
2

1 xJxxxJxJx nnn    

)()(= 12 xxJxJ nn    

).(= 3 xJn  

 So we have the result.  
2.  It follows from Theorems 1 and   Part 1.  ▄ 
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