ON THE INDEPENDENCE POLYNOMIALS OF CERTAIN MOLECULAR GRAPHS

MOHAMMAD H. REYHANI, SAEID ALIKHANI^a, ROSLAN HASNI^{b*}

Department of Mathematics, Faculty of Science, Islamic Azad University, Yazd Branch, Yazd, Iran

^aDepartment of Mathematics, Yazd University 89195-741, Yazd, Iran

^bSchool of Mathematical Sciences, Universiti Sains Malaysia

11800 USM, Penang, Malaysia

The independence polynomial of a molecular graph G is the polynomial $I(G,x) = \sum i_k x^k$, where i_k denote the number of independent sets of cardinality k in G. In this paper, we consider specific graphs denoted by G(m) and $G_1(m)G_2$ and obtain formulas for their independence polynomials which are in terms of Jacobsthal polynomial. Also we compute the independence polynomial of another kind of graphs.

(Recieved November 17, 2011; Accepted February 10, 2012)

Keywords: Independence polynomial; Jacobsthal polynomial; Graph

1. Introduction

A simple graph G = (V, E) is a finite nonempty set V(G) of objects called vertices together with a (possibly empty) set E(G) of unordered pairs of distinct vertices of G called edges. In chemical graphs, the vertices of the graph correspond to the atoms of the molecule, and the edges represent the chemical bonds.

An *independent set* of a graph G is a set of vertices where no two vertices are adjacent. The *independence number* is the size of a maximum independent set in the graph. For a graph G with independence β , let i_k denote the number of independent sets of cardinality k in

G (k =0,1,..., β). The *independence polynomial* of G, $I(G,x) = \sum_{k=0}^{\beta} i_k x^k$, is the generating polynomial for the independent sequence $(i_0 i_1, i_2, ..., i_{\beta})$ ([3]). The path P_4 on 4 vertices, for example, has one independent set of cardinality 0 (the empty set), four independent sets of cardinality 1, and three independent sets of cardinality 2; its independence polynomial is then $I(P_4, x) = 1 + 4x + 3x^2$.

Hoede and Li [5] obtained the following recursive formula for the independence polynomial of a graph.

Theorem 1. For any vertex v of a graph G, I(G, x) = I(G - v, x) + xI(G - [v], x) where [v] is the closed neighberhood of v, contains of v, together with all vertices incident with v.

_

Corresponding author: hroslan@cs.usm.my

Let us observe that if G and H are isomorphic, then I(G, x) = I(H, x). The converse is not generally true. For Two graphs G and H are independent equivalent, written $G \sim H$, if I(G, x) = I(H, x). A graph G is independent unique, if I(H, x) = I(G, x) implies that $H \cong G$. Let [G] denote the independent equivalence class determined by the graph G under the equivalence relation \sim . Clearly, G is independent unique if and only if $[G] = \{G\}$. A zero of I(G, x) is called a *independence zero* of G.

The corona of two graphs G_1 and G_2 , as defined by Frucht and Harary in [4], is the graph $G_1 \circ G_2$ formed from one copy of G_1 and $|V(G_1)|$ copies of G_2 , where the ith vertex of G_1 is adjacent to every vertex in the ith copy of G_2 . The corona $G \circ K_1$, in particular, is the graph constructed from a copy of G, where for each vertex $v \in V(G)$, a new vertex v and a pendant edge vv' are added.

In Section 2, we study Jacobsthal polynomial and introduce two graphs with specific structures denoted by G(m) and $G_1(m)G_2$. Using the results related to Jacobsthal polynomial, we compute the independence polynomials of G(m) and $G_1(m)G_2$ in Section 3.

2. Jacobsthal polynomial

Jacobsthal polynomials, $J_n(x)$, named after the German mathematician E. Jacobsthal are related to Fibonacci polynomials. They are defined by

$$J_n(x) = J_{n-1}(x) + xJ_{n-2}(x)$$

where $J_1(x) = J_2(x) = 1$ (see [6], p.469).

In this section, we shall find the zeros of $J_n(x)$. First, we need the following two lemmas to obtain a solution of Jacobsthal polynomials.

Lemma 1. For any real number
$$u$$
, $J_n(u^2 + u) = \sum_{i=0}^{n-1} (1+u)^i (-u)^{n-1-i}$.

Proof. It is clear that the result holds when n = 2. Now let $n \ge 3$. By induction, we have

$$\begin{split} J_n(u^2+u) &= J_{n-1}(u^2+u) + (u^2+u)J_{n-2}(u^2+u) \\ &= \sum_{i=0}^{n-2} (1+u)^i (-u)^{n-2-i} + (u^2+u) \sum_{i=0}^{n-3} (1+u)^i (-u)^{n-3-i} \\ &= \sum_{i=0}^{n-2} (1+u)^i (-u)^{n-2-i} - \sum_{i=0}^{n-3} (1+u)^{i+1} (-u)^{n-2-i} \\ &= (1+u)^{n-2} + \sum_{i=0}^{n-3} (1+u)^i (-u)^{n-2-i} - \\ &\sum_{i=0}^{n-3} (1+u)^{i+1} (-u)^{n-2-i} \\ &= (1+u)^{n-2} + \sum_{i=0}^{n-3} (1+u)^i (-u)^{n-1-i} \\ &= \sum_{i=0}^{n-1} (1+u)^i (-u)^{n-1-i} . \end{split}$$

Corollary 1. For any real number u, $(2u+1)J_n(u^2+u)=(1+u)^n-(-u)^n$.

Proof. The result follows from Lemma 1 by using the identity

$$a^{n} - b^{n} = (a - b) \left(\sum_{i=0}^{n-1} a^{i} b^{n-1-i} \right),$$

for a = 1 + u, b = -u.

Lemma 2. ([2], p.64) For real numbers a, b and positive integer n,

$$a^{n} - b^{n} = \begin{cases} (a - b) \prod_{s=1}^{\frac{n-1}{2}} \left(a^{2} + b^{2} - 2ab\cos\frac{2s\pi}{n}\right); & n \text{ is odd,} \\ (a - b)(a + b) \prod_{s=1}^{\frac{n-2}{2}} \left(a^{2} + b^{2} - 2ab\cos\frac{2s\pi}{n}\right); & n \text{ is even.} \end{cases}$$

Theorem 2. For any positive integer n, $J_n(x) = \prod_{s=1}^{\lfloor \frac{n-1}{2} \rfloor} \left(2x + 1 + 2x \cos \frac{2s\pi}{n} \right)$.

Proof. If put a = 1 + u, b = -u, we have $a - b = a^2 - b^2 = 1 + 2u$, therefore by using Lemma 2 and Corollary 1, for any real number $u \neq -\frac{1}{2}$,

$$J_n(u^2 + u) = \prod_{s=1}^{\lfloor \frac{n-1}{2} \rfloor} \left(2u^2 + 2u + 1 + 2(u^2 + u) \cos \frac{2s\pi}{n} \right).$$

Observe that for any real number x with $x > -\frac{1}{4}$, there is a real number $u \neq -\frac{1}{2}$ such that

$$u^2 + u = x$$
. Thus for each real number with $x > -\frac{1}{4}$, $J_n(x) = \prod_{s=1}^{\lfloor \frac{n-1}{2} \rfloor} \left(2x + 1 + 2x \cos \frac{2s\pi}{n}\right)$.

Since $J_n(x)$ is a polynomial with degree less than n, the above equality also holds for any real number $x \le -\frac{1}{4}$. Thus the result is obtained.

3. Independence polynomial of certain graphs

In this section we consider some specific graphs and compute their independence polynomial (see [1]). Let P_{m+1} be a path with vertices labeled by $y_0, y_1, ..., y_m$, for $m \ge 0$ and let G be any graph. Denote by $G_{v_0}(m)$ (or simply G(m), if there is no likelihood of confusion) a graph obtained from G by identifying the vertex V_0 of G with an end vertex Y_0 of P_{m+1} (see Figure 1). For example, if G is a path F_2 , then $F_2(m)$ is the path $F_3(m)$ and $F_3(m)$ and $F_3(m)$ and $F_3(m)$ and $F_3(m)$ from a vertex in $F_3(m)$ to a vertex

of G_2 , by $G_1(m)G_2$. (Figure 1).

Fig.1. Graphs G(m) and $G_1(m)G_2$, respectively.

Theorem 3. Let $n \ge 2$ be integer. Then, the independence polynomial of G(n) is $I(G(n),x) = J_n(x)I(G(1),x) + xJ_{n-1}(x)I(G,x)$.

Proof. Proof by induction on n. Since $J_1(x) = J_2(x) = 1$, the result is true for n = 2 by Theorem 1. Now suppose that the result is true for all natural numbers less than n and prove it for n. By using Theorem 1 for $v = y_n$, and induction hypothesis, we have

$$\begin{split} I(G(n),x) &= I(G(n-1),x) + xI(G(n-2),x) = \\ &= J_{n-1}(x)I(G(1),x) + xJ_{n-2}(x)I(G,x) \\ &+ x(J_{n-2}(x)I(G(1),x) + xJ_{n-3}(x)I(G,x) \\ &= (J_{n-1}(x) + xJ_{n-2}(x))I(G(1),x) + x(J_{n-2}(x) + xJ_{n-3}(x))I(G,x) \\ &= J_n(x)I(G(1),x) + xJ_{n-1}(x)I(G,x). \end{split}$$

The following theorem gives the formula for computing the independence polynomial of graphs $G_1(m)G_2$ as shown in Figure 1:

Theorem 4. Let $n \ge 5$ be integer. The independence polynomial of $G_1(n)G_2$ is

$$I(G_{1}(n)G_{2}, x) =$$

$$I(G_{1}(1),x)I(G_{2}(1),x)J_{n-2}(x) + x(I(G_{1}(1),x)I(G_{2},x) + I(G_{1},x)I(G_{2}(1),x))J_{n-3}(x) + x^{2}I(G_{1},x)I(G_{2},x)J_{n-4}(x).$$

Proof. Proof by induction on n. If n = 5, then by Theorems 1 and 3, and induction hypothesis, we have

$$I(G_1(5)G_2, x) = I(G_1(1),x)I(G_2(3),x) + x(I(G_1,x)I(G_2(2),x) =$$

$$= (1+x)I(G_1(1),x)I(G_2(1),x) + x(I(G_1(1),x)I(G_2,x) + I(G_1,x)I(G_2(1),x)) + x^2I(G_1,x)I(G_2,x).$$

So the theorem is true for n = 5. Now suppose that the result is true for less than n and we prove it for n. By Theorems 1 and 3, and induction hypothesis, we have

$$I(G_1(n)G_2, x) =$$

$$I(G_1(1),x)I(G_2(n-2),x) + x(I(G_1,x)I(G_2(n-3),x) =$$

$$I(G_1(1),x)I(G_2(1),x)J_{n-2}(x) + x(I(G_1(1),x)I(G_2,x)$$

+
$$I(G_1, x)I(G_2(1), x))J_{n-3}(x) + x^2I(G_1, x)I(G_2, x)J_{n-4}(x)$$
.

Theorem 3 implies that all forms of $G_1(m)G_2$ have the same independence polynomials. As application of Theorem 3, we obtain the following formula:

Corollary 2.

1. The independence polynomial of path P_n is

$$I(P_n, x) = J_{n+2}(x) = \prod_{s=1}^{\lfloor \frac{n+1}{2} \rfloor} \left(2x + 1 + 2x \cos \frac{2s\pi}{n+2} \right).$$

2. The independence polynomial of cycle C_n $(n \ge 2)$ is

$$I(C_n, x) = J_{n+1}(x) + xJ_{n-1}(x).$$

Proof.

1. By using Theorem 1, for $G = K_1$, we have

$$I(P_{n+1}, x) = I(K_1(n), x) = J_n(x)I(K_1(1), x) + xJ_{n-1}(x)I(K_1, x)$$

$$= (1+2x)J_n(x) + xJ_{n-1}(x) + x^2J_{n-1}(x)$$

$$= J_{n+2}(x) + xJ_{n+1}(x)$$

$$= J_{n+3}(x).$$

So we have the result.

2. It follows from Theorems 1 and Part 1.

References

- [1] S. Alikhani, M.A. Iranmanesh, Digest Journal of Nanomaterials and Biostructures 5, (1), 1 (2010).
- [2] S. Barnard, J.F. Child, Higher-Algebra, Macmillan, London, (1955).
- [3] I. Gutman, F. Harary, Utilitas Mathematica 24 (1983)97-106.
- [4] R. Frucht, F. Harary, Aequationes Math, (1970); 4, 322-324.
- [5] C. Hoede, X. Li, Discrete Math. 25 (1994), 219-228.
- [6] T. Koshy, Fibonacci, Lucas Numbers with Applications, A Wiley-Interscience Series of Texts, (2001).