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In this research, the effect of waste ground rubber tire (WGRT) powder was 
experimentally investigated on mechanical properties of polypropylene (PP). PP-g-MA 
compatibilizer was used to increase the compatibility of waste rubber tire powder with the 
PP matrix. All the samples were mixed in a co-rotating twin screw extruder and were 
formed into standard tensile and impact bars using the injection molding method. The 
morphology of combinations was studied by field emission scanning electron microscopy 
(FESEM). The FESEM micrographs taken from fracture surface of the parts indicated that 
PP-g-MA led to compatibility increase of tire powder with the PP matrix and better 
dispersion and prevented from agglomeration of tire powder in that. Adding tire powder to 
PP matrix in all binary and ternary combinations increased impact strength of PP. In the 
blends containing 5 wt% PP-g-MA, significant changes in tensile properties of the 
compositions occurred that may be caused by the created appropriate bond strength in this 
weight percent of PP-g-MA between tire powder particles and PP matrix. Young's 
modulus, yield stress and tensile strength of ternary combinations increased by the 
decrease of the weight percent of tire powder and increase of PP-g-MA, which were 
attributed to the increased bond strength. Also, break elongation decreased with the 
decrease of the weight percent of tire powder and increase of the amount of PP-g-MA, due 
to the reduced soft rubber phase and increased bond strength.  
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1. Introduction  
 
Low impact strength, especially at low temperatures, is one of the PP weaknesses that is a 

limitation for its use in many applications [1-3]. Using materials with high impact strength in PP-
based compounds is considered one of the strategies for dealing with this weakness. In this regard, 
the use of rubbers such as waste rubber tire powder in the PP-based compounds is useful because 
of its low price and good environmental effects [4]. Waste ground rubber tire (WGRT) powder is a 
thermoset material, which include polymer chains with irreversible cross-links. These links avoids 
the materials from being reprocessed and reused. Adding the WGRT in powder form or vulcanized 
scrap into polymer compositions has lots of economic benefits [5, 6].  

The technical and commercial feasibility of using WGRT powder as filler has been 
demonstrated in many applications like roofing and shoe soles. The properties of polymer 
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composites are determined by four factors of component properties, composition, structure and 
interfacial interaction. Interfacial adhesion is extremely important in all the composites used in 
load-bearing applications. Improper adhesion leads to debonding of the components, development 
of voids, which may merge to large cracks, and premature failure of the part. Interfacial adhesion 
is the decisive factor which determines the properties of composites and appropriate adjustment of 
interphase properties; adhesion strength is the most important condition of achieving acceptable 
properties. Very strong adhesion is claimed to lead to stiff and brittle composites while, in the case 
of weak adhesion, the components are debonded under the effect of external load. Therefore, 
medium or appropriate strength is claimed to have the highest advantages which can be induced by 
fundamental reaction in the melt-mixing process [7, 8]. The interfacial adhesion between the 
WGRT and the polymer matrix is usually very weak due to the cross-linked structure of WGRT. In 
order to further improve the interfacial adhesion between the WGRT and the PP, not only the 
WGRT should be devulcanized, or at least partially devulcanized, to facilitate the molecular 
entanglement between the WGRT and the PP matrix, but also the compatibilizer must be added to 
the blend. Functionalized polymers are often added to polyolefin composites to create the 
necessary adhesion [9, 10].  

As far as the compositions of PP and WGRT are concerned, the maleic anhydride grafted 
functionalized polymers are more used as compatibilizer [11-13]. The surface of the WGRT reacts 
with a functionalized polymer that has a compatibilizer role such that the cross links in the WGRT 
are broken under mechanical mixing in extruder and the MA polar group in functionalized 
polymer reacts with the phenolic OH group in WGRT [11-14]. This chemical interaction leads to 
improved compatibility and adhesion between PP and WGRT as well as better dispersion of tire 
powder in polypropylene matrix [1, 15 and 16].  

In this research, the effect of WGRT powder was experimentally investigated on 
mechanical properties of PP. PP-g-MA compatibilizer was used to increase the compatibility of 
WGRT powder with the PP matrix. All binary and ternary composites and even pure PP and pure 
WGRT powder through melt mixing method were mixed in a co-rotating twin screw extruder and 
then were formed into standard tensile and impact bars using the injection molding machine. 
Impact strength and tensile tests were performed to see the effect of embedding the desired 
particles in the PP matrix. The results showed that, if the proper amount of these particles was 
used, the impact and tensile strength of the compounds might be considerably improved. 

 
2. Experiment 
 
2.1. Materials 
 
In this study, PP homopolymer moplen HP550J was supplied by Arak Petrochemical 

Company, Iran. Its melt flow index (MFI) measured by an ASTM-D1238 was 3g/10 min (230 °C, 
2.16 kg). The compatibilizer, PP grafted maleic anhydride (PP-g-MA) (MA content = 2.4 wt%, 
MFI = 38 g/10 min with an ISO1133), was purchased from Kimia Baspar Company, Iran. 
According to the manufacturer, the brand of PP in the PP-g-MA was V30S from Maroun 
Petrochemical Company. WGRT was produced by Taminavaran Lastik Ghadir Company in Iran. 
The WGRT was produced by a wet grinding method from a combination of 70% truck tires and 
30% passenger tires. The material was obtained from the whole part of tires, with separated metal 
and polyester cords. Its particle size was characterized to be 50 meshes (≈300 µm) by FESEM 
(Fig. 1). The approximate composition of the WGRT was as follows: 29% natural rubber (NR), 
26% styrene-co-butadiene rubber (SBR), 30% carbon black, 9% oils and low molecular weight 
additives and 6% ash. The exact composition depends on the specific type of tire and the place of 
the tire from which the particles are originated. 
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Fig. 1. FESEM micrograph of 50 mesh WGRT powder. 
 

 
2.2. Sample preparation 
 
Each of the pure PP,  PP-g-MA, WGRT samples and also all binary and ternary 

compounds were built in the same conditions after physically mixing their components. Composite 
ingredients were mixed together in each case based on the weight percentage. Compounding of the 
materials was done using a co-rotating twin screw extruder (ZSK 25 P8.2E WLE). This extruder 
had six temperature control zones. Unblended pure PP, WGRT and other blends were prepared in 
a temperature profile of 160/165/170/175/180/190 ˚C. The screw speed was fixed at 250 rpm. The 
L/D ratio of the screws was 40 and D = 25 mm. The product was cooled in a water bath and was 
later granulated into a form ready for injection molding into impact and tensile test specimens. 
Injection molding was carried out in a temperature profile of 190/200/210 ˚C with an injection 
pressure of 90 bar. After conditioning for 24 h, mechanical properties were evaluated. Stress–
strain data were determined by the Zwick/Roell machine, Z100 model, on I-type specimens 
according to ASTM D-638. A crosshead speed of 5 mm/min was used in the tensile tests. Izod 
impact strength testing of the notched specimens according to ASTM D-256 was conducted using 
an RESIL IMPACTOR impact tester at 1 J energy level. The average value of the impact and 
tensile properties were calculated using at least five samples. Their compositions are listed in 
Table 1. Letter “g” represents the weight percent of PP-g-MA and letter “W” represents the weight 
percent of tire powder in combination. No letter number indicates the weight percent of PP. 

 
2. 3. Scanning electron microscopy and phase structure analysis  
 
Studying of composites microstructure, dispersion manner of tire particles in the PP matrix 

were done by a Hitachi (S-4160) field emission scanning electron microscopy (FESEM) at 15 kV 
working voltage. The specimens were obtained by cryogenic fracture. After immersing the 
samples in liquid nitrogen for more than 20 min, they were broken by hand immediately (less than 
3 s) after they had been taken out of liquid nitrogen. To prevent electrical charging, the SEM 
samples were sputter-coated with  a thin layer of gold. The coating of the fracture surfaces was 
done by TECHNICS machine, for 12 minutes at 6 kV working Voltage and 5 mA flow under 
argon gas atmosphere. To improve the contrast between PP matrix and WGRT phase, the fractured 
surfaces of all composites containing PP and WGRT were etched in 12 M hydrochloric acid for 
one week in advance. 
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Tensile strength and elongation at break are related inversely.  An  increase in tensile 
strength results in a reduction of elongation at break.  In binary combination by increasing the 
weight percentages of WGRT, elongation at break increases which is because of the elastic 
property of rubber (as an elastomer). This also increases the softness of the matrix that is caused 
by using of the soft tire powder.  

 
3.2.2. Effect of PP-g-MA 
 
In this study, the aim of adding PP-g-MA to the matrix was to increase the compatibility 

of waste WGRT and the PP matrix [15].  To see the effect of adding this material on the 
mechanical properties of PP matrix, 5 and 10 wt% PP-g-MA was added to a PP matrix. Then, the 
mechanical properties of binary compounds were compared with the pure PP-g-MA and PP. 
Impact strength, yield stress and tensile strength of pure PP and PP-g-MA binary compounds are 
shown in Fig. 4. As can be observed, by increasing PP-g-MA weight percent in the PP matrix, its 
impact strength increased.  It is evident that, in 5wt% of PP-g-MA, impact strength increased by 
about 39% and, in 10wt% of PP-g-MA, it increased by about 52%. This increase can be caused by 
the compatibility of PP used in manufacturing PP-g-MA with the PP matrix that established 
appropriate links between them and formed a uniform matrix. Although the impact strength of PP-
g-MA was low, its composition with PP led to the increase in the impact strength.  

Yield stress and ultimate strength bars showed the same trend of changes such as the 
Young's modulus. Apparently, in 5wt% PP-g-MA, tensile properties of PP matrix showed a good 
improvement that could be attributed to the formation of strong links between PP-g-MA and 
matrix. But, by increasing PP-g-MA in PP matrix, the increased percentage of maleic anhydride 
was derived which resulted in the increase of PP-g-MA and led to earlier yielding of compound. 
This also resulted in the reduction of ultimate strength of the compound.  

Young's modulus and elongation at break of pure PP and PP-g-MA binary compounds can 
be seen in Fig. 5. As can be observed, modulus of PP-g-MA was about 12% lower than PP. This 
was a piece of evidence for the low stiffness of the PP-g-MA with respect to PP. 

Apparently, the addition of small amounts of PP-g-MA increased the binary compounds' 
modulus. This might be due to the creation of strong links between the PP and PP-g-MA. The 
more PP-g-MA was added to the PP matrix, the less the modulus of the compound would be 
reached, which was because of the low modulus of PP-g-MA.  

 
3.2.3. Effect of simultaneous presence of WGRT and PP-g-MA 
 
Fig. 6 shows impact strength, yield stress and tensile strength of pure and ternary 

combinations of PP, WGRT powder and PP-g-MA. Accordingly, adding WGRT to the PP matrix 
led to an increase in the impact strength. All binary and ternary compounds had higher impact 
strength than pure PP. The binary combinations also had higher impact strength than ternary ones. 
Also, in all ternary compounds, increase of PP-g-MA simultaneously with the reduction of WGRT 
reduced the impact strength of the samples. Although this reduction was low, in the ternary blends 
containing 5wt% PP-g-MA, substantial changes occurred which could be caused by strong 
bonding between rubber particles and PP matrix.  The presence of PP-g-MA increased 
compatibility of WGRT powder with PP matrix and particle adhesion to the matrix and, as noted 
earlier, this compatibility was coming from reactivity of MA groups in PP-g-MA and phenolic OH 
groups in the WGRT powder. Indeed, the PP-g-MA was placed in the interface of tire powder and 
PP matrix. As mentioned above, in ternary compounds, reducing WGRT powder or increasing PP-
g-MA decreased impact strength of the samples. This might be due to the reduction of rubber 
phase, as a factor of increasing the impact energy, and also because of increasing PP-g-MA brittle 
phase in compounds. 
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and 5 wt% PP-g-MA, an increase in elongation at break was observed that could be resulted in the 
creation of strong bonds between rubber particles and the matrix due to the consistent effect of PP-
g-MA.  

 
4. Conclusions 
 
In this research, the effect of WGRT powder on mechanical properties of PP was 

experimentally investigated. The FESEM micrographs indicated that PP-g-MA led to the 
compatibility increase of WGRT powder with the PP matrix, better dispersion of tire powder and 
preventing from their agglomeration in the matrix.  

Adding tire powder to PP matrix in all binary and ternary combinations yielded increase of 
impact strength of the compounds. The rate of this increase was more in higher filler percentages. 
Increase of the impact strength even in high percentages of the WGRT powder indicated good 
dispersion. In the ternary compounds consisting of PP, wear WGRT powder and PP-g-MA, 
increase of PP-g-MA led to the decrease in the impact strength of the compounds. Due to the 
brittle nature of PP-g-MA and establishing strong bonds between WGRT powder particles and the 
matrix, the impact strength of the compounds decreased. By decreasing the WGRT powder or 
increasing the amount of PP-g-MA, Young's modulus, yield and tensile strength increased and 
elongation at break decreased. Generally, in 5 wt% of PP-g-MA, mechanical properties had 
significant improvement, which could be attributed to the formation of appropriate bonds between 
PP-g-MA and matrix. But, by increasing PP-g-MA, a loss in mechanical properties of the 
compound happened because of the increase of maleic anhydride in PP matrix. 
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