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Using Monte Carlo simulations, we investigated the sporadic nucleation of polymers and 
the results were compared with those obtained from the Avrami equation. From the 
simulation data, we calculated the overall crystallization rate constants and the Avrami 
indices. We considered isotropic growth of the nuclei in 1,2 and 3 dimension, the obtained 
results for the Avrami  indices being in excellent agreement with theory and experiments. 
We also investigated the dependence of the overall crystallization rate constant on the 
crystallization velocity. 
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1. Introduction 
  
Contrasting to micro-molecular substances, as a subfield of soft matter systems, polymers 

consist of long, linear or branched chains, covering a broad distribution of molecular lengths. It 
follows that not all of molecular architectures are suitable to give regularly shaped crystals in the 
solid state. Usually, polymers solidify as very tiny crystals dispersed in an amorphous matrix and 
interconnected by disordered chains randomly disposed [1,2]. In polymer solutions or melts, the 
macromolecules are entangled, giving rise to bunches of interpenetrated random chains. It follows 
that the task of packing these long coiled molecules into crystal may be very difficult and the 
process is not total, the correct term used for polymers being semicrystalline materials [1-4].  

The crystallization process of small molecules is a well known two steps mechanism [5]. 
The first step, or the nucleation phase, consists in the formation of a nucleus of the crystalline 
phase. If the sizes of the formed nuclei are greater than a certain critical size, this step is followed 
by the growth step, consisting in growing of such nuclei. In the case of small molecules, the 
process is not generally hindered and it develops until the degree of crystallinity eventually 
becomes equal with one. 

As it is conceptually explained in [2], the property of semicrystallinity of polymers may be 
understood as follows.  Due to the fact that polymer molecules are very long, at a certain 
temperature, they may have a huge number of equilibrium conformations, translated in a 
complicated landscape of entropy and free energy. In the first stage of the crystallization process, a 
nucleus is formed by monomers coming from different locations of the folded polymeric chain, or 
even from different chains. In the next step, the step of growing, there will be a competition 
between these heterogeneous nuclei to incorporate monomers not yet fixed in the crystalline state. 
On the other hand, the number of equilibrium conformations of the incorporated macromolecules 
dramatically decreases, the entropy of the chain also decreases, giving a big set of barriers in the 
free energy landscape (a typical characteristic of the soft matter systems). It follows that there may 
be a number of monomers belonging to different macromolecules that cannot enter in the 
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and do not contribute to the increase of the transformed volume fraction. If two growing nuclei 
have superposed regions, the superposed volume should be counted only once in the transformed 
volume fraction.  
 Without awareness about intimate molecular mechanism involved in the crystallization 
process, the Avrami equation gives convenient means of empirically describing crystallization and 
the results of the model are in very good agreement with the experimental facts [1-4, 6]. 
 Although exact calculations based on the Avrami equation have been made, the same 
results may be obtained by computer simulations. In recent years, computer molecular modeling 
became a useful tool in the investigation of polymers [13, 14], as well as in analysis and solution 
of problems associated with crystallization [15, 16]. 
 In the present paper, we used Monte Carlo simulation in order to better understand and 
analyze and the process of polymer crystallization. 
 
 2. Molecular Model and Simulation Method 
  

The Avrami method, which hypotheses were described in the introductory part of this 
paper, is applicable to any type of crystallization process, not only for polymers as a soft matter 
system. There are two approaches for addressing the crystallization of polymers [17]:  
 1. athermal nucleation, sometimes called instantaneous nucleation: all the nuclei are 
formed at the beginning of the crystallization and start to spherically grow  at constant rate; 
 2. thermal nucleation, sometimes called sporadic nucleation: the nuclei are formed at a 
constant time rate and are uniform disposed in the volume of the probe. The already formed nuclei 
again grow at constant rate. 
 Because here we are interested only in thermal nucleation, we will briefly present here its 
main results. 
 Since it is assumed that crystallization starts randomly at different locations and 
propagates outwards from the nucleation sites, the process may be described as follows [6, 17]: if 
raindrops randomly fall on the surface of water and create expanding circular waves, what is the 
probability that the number of waves passing a representative point P up to time t is exactly n?. 
The problem was solved by Poisson and is referred to as the Poisson distribution:  
 

ܲሺ݊ሻ ൌ
௘௫௣ሺିாሻா೙

௡!
     (1) 

 
where E is the average number of the average value of the number of waves passing a point P. 
 The number of waves ݀ܧ which pass through the point P for nuclei within the spherical 
shell ݎ, ݎ ൅  :is [17] ݎ݀
 

ܧ݀ ൌ ଶݎߨ4 ቀݐ െ
௥

௩
ቁ  (2)     ݎ݀	ܫ

 
where v is the growth velocity of the nuclei and I is the number of nuclei which appear in the unit 
time per unit of volume. The assumption is that we work in the 3- Dimensional space. 
 The probability that no wave fronts pass at the point P is: 
 

 ܲሺ0ሻ ൌ  ሻ     (3)ܧሺെ݌ݔ݁
 

 If we denote by Xc the crystalline fraction of the material, ܲሺ0ሻ is equivalent with the 
volume fraction of the polymer which is still in the molten state [4]: 
 

ܲሺ0ሻ ൌ 1 െ ܺ௖            (4) 
 

 If we integrate firstly equation (2) and insert the result in equation (3) and (4), we obtain 
[17]: 
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1 െ ܺ௖ ൌ ݌ݔ݁ ቀെ
గூ௩య

ଷ
 ସቁ            (5)ݐ

 The coefficient of time and its exponent depend on nucleation and growth mechanism, 
then equation (5) may be rewritten in the Avrami form: 
 

1 െ ܺ௖ ൌ  ௡ሻ            (6)ݐሺെ݇݌ݔ݁
 

with ݇ ൌ
గூ௩య

ଷ
 - the overall crystallization rate constant and n - the Avrami index.  

 The Avrami index may be considered as being composed by two terms [18]: 
 

݊ ൌ ݊ௗ ൅ ݊௡        (7) 
 

where nd represents the dimensionality of the growing crystals and nn represents the time 
dependence of the nucleation (in our case  it is 1). For instantaneous nucleation, the Avrami 
equation has a similar form, but this coefficient is then 0 [6,17]. 
 In our Monte Carlo simulations, we consider the sporadic nucleation of a polymer in a 
cubic box of length L. During the run, we randomly throw nuclei inside the volume of the box, at a 
constant rate, I, and all the nuclei were spherically grown with the same velocity, v. Through the 
simulation, we recorded the volume percent of the crystalline fraction of polymer, Xc, at every 
time step. The last quantity was calculated as the ratio between the volume occupied by spherulites 
(taking account of possible overlapping) and the volume of the box. 
 In order to avoid fluctuations, the process was repeated for a 100 cycles and we used 
averaged data for processing. 
  
 3. Results and discussion 
  

The first set of simulations were performed in a cubic box with length ܮ ൌ 40, at a 
nucleation rate ܫ ൌ 1	and at a growing velocity ݒ ൌ 0.5. The dependence of the volume fraction of 
the polymer as function of time is depicted in Figure 2. Its sigmoid behaviour is identical with the 
theoretical one predicted in [17] on the basis of the Avrami equation (6).   

 
Fig. 2:  Volume fraction of the polymer as function of time for a  

cubic box with ܮ ൌ 40 and ݒ ൌ 0.5. Lines are only guide to the eyes. 
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 We have to notice that the crystalline fraction of polymer obtained in our simulations, as 
well as those predicted by Avrami equation (6), asymptotically tend towards 1 (in our simulation 
towards 100%, since we expressed the volume fractions as percentage). As we explained in the 
introductory part, the real polymers are only semicrystalline, because the crystals are never 
completely filling the volume. This discrepancy may be explained by the simplifications of the 
Avrami model and by the observation from [6], according to which the real nucleation of a 
polymer is a mixture of athermal and thermal nucleation.   
 The main goal of the Avrami equation is to obtain the overall crystallization rate constant, 
k, and the Avrami index, n. These may be directly calculated by using methods similar to those 
described in [19, 20], but the results are more precise and easier to obtain if equation (6) is 
linearized by taking the double logarithm [1-4, 6, 17]: 
 

݈݊ሾെ ݈݊ሺ1 െ ܺ௖ሻሿ ൌ ݈݊ ݇ ൅ ݊ ݈݊  (8)           ݐ
 

 If the left side of the equation (8) is represented as function of  ln  we obtain a line with ,ݐ
the slope equal with the Avrami index, while the intercept equals the logarithm of the 
crystallization rate constant. The graph in figure 3 is the linearization of the simulated data from 
figure 2 conditions. 

 
Fig. 3:  Representation of the equation (8) for a cubic box  

with ܮ ൌ 40 and ݒ ൌ 0.5. The red line represents the linear fit of the data. 
 
 
 The linear fit gives  ݊ ൌ 4.06 േ 0.02 and ݈݊ ݇ ൌ െ13.64 േ 0.02. Taking into account that 
the simulation was for a 3D cubic box, the value of ݊ ൌ 3 ൅ 1 is in excellent agreement with the 
value predicted from theory [6, 17, 18]. 
 The nucleation rate and the growing velocity of the nuclei are the main parameters which 
drive computer simulations of the crystallization process. We investigate the role of the growing 
velocity by repeating the simulations for same simulation box and nucleation rate and for a range 
of growth velocities from 0.1 to 1. The results are depicted in Fig. 4 and a summary of the data is 
presented in Table 1. 
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Fig. 5:  Dependence of crystallization rate as function of ݒଷ.  

The line is linear fit of data. 
 
 

 Using two modified versions of our computer program, we also made simulations 
for 2-dimensional and 1-dimensional systems. For the two dimensional system, we found the 
Avrami index ݊ ൌ 2.982 േ 0.002 and for the one dimensional system, the value was ݊ ൌ 1.99 േ
0.07.  Both results entirely match with equation (7), which states that, for sporadic nucleation, n 
represents the space dimensionality plus 1 (from time variable). The results for the low 
dimensional spaces (and especially for the 1-dimensional system) are in perfect agreement with the 
theory [6, 17], giving a true insight about the universality of the Avrami model as a valuable 
theoretical tool used in investigating soft matter systems.  

 
 
4. Conclusions 
 
Monte Carlo simulation is a important instrument for analyzing the kinetics of 

crystallization of polymers. Our computational models provided excellent results and confirm the 
predictions of the Avrami equation that theoretically describes the crystallization process.  

From the simulation data, we calculated the overall crystallization rate constant and the 
Avrami index. The most important parameter, the Avrami index, was obtained in accordance with 
the theoretically prediction  n ൌ ݊ௗ ൅ ݊௡ for usual 3-Dimensional space, but also for 2-
Dimensional and 1-Dimensional spaces. The key conclusion is that the Avrami equation is 
universal valid and can be applied for processes in 3D space as well as for in plane thin films (2D) 
or thin rods/filaments (1D) soft matter systems.  

For the usual cubic box, we also systematically investigated the dependence of the overall 
crystallization rate constant on the crystallization velocity. We found that the dependence is on the 
3-th power of v, as is calculated from theory. 

A drawback of the computer program is that it predicts, for a sufficient long run, a 
crystallization degree equal to the unity. Although the results are in accordance with those of the 
Avrami equation, both the approaches suffer - as the polymer in the solid state is always only 
semicrystalline (because the crystals are never completely filling the volume). The explanation 
consists in simplifying the assumptions of the Avrami model presented in the second section of the 
paper and also used in our computer simulations. To overcome this problem it was proposed a 
modified version of the Avrami equation [6, 17]: 
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1 െ
ଡ଼ౙ
ଡ଼ౙ∞

ൌ  ௡ሻ                  (9)ݐሺെ݇݌ݔ݁

where Xୡ∞ is the finally reached volume crystallinity.  
 In order to better complement with the real systems, the simulation programs may be 
easily adapted for further using equation (9) with Xୡ∞ obtained from experimental data like DSC 
(Differential Scanning Callorimetry) and dilatometric methods.  
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