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The aim of this article is to study the Young’s modulus and Poisson’s ratio of graphene 
sheets using the molecular dynamics simulation. In the simulation, the graphene sheets 
subjected to a uniaxial tensile loading at different temperatures is performed until failure 
occurres. The results show that the failure strain of the graphene sheets decreases with 
increasing temperature. A nonlinear relation between the stress and strain is obtained. In 
addition, Poisson’s ratio of graphene sheets increases as the temperature increases. 
However, Young’s modulus decreased with increasing temperature.  
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1. Introduction 
 
In recent years, graphene has attracted great scientific interest because of its excellent 

mechanical, chemical, and thermal properties [1-4]. In addition, due to its outstanding electronic 
properties, graphene may be viewed as a possibility for replacing silicon in future electronic 
nanodevices [5]. The electronic behaviour of graphene can be influenced by its mechanical 
properties [6]. Therefore, the study of the mechanical behaviours of graphene is important and 
valuable for exploring its application in electronic and other fields. 

With the rapid development of computer technology over the past years, molecular 
dynamics (MD) simulation has been very effective in simulating the mechanical properties of 
nanostructured materials and in recognizing the microscopic mechanisms and offering insights into 
microscopic behaviours [7-13]. In recent years, MD simulation has also been used to study the 
mechanical properties of graphene [14-18]. For example, Jiang et al. [14] investigated the Young’s 
modulus of graphene with the intrinsic thermal vibration in graphene by molecular dynamics and 
obtained that the results agree very well with the experiment data. Li [16] studied the stretchability 
of grapheme nanoribbons through molecular dynamics simulations and found that they can be 
considerably strengthened by a small twist angle. Erdogan et al. [17] performed the tight-binding 
molecular dynamics to study the structural changes of grapheme nanoribbons under uniaxial 
stretching. 
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In this article, molecular dynamics simulation is used to study the mechanical properties of 
graphene sheets under uniaxial tensile loading. The Young’s modulus and Poisson’s ratio at 
temperatures of 200, 300, 400, and 500K are investigated. 

 
2. Simulation method 
 
The armchair graphene sheets consists of 2296 carbon atoms with the dimensions around  

l = 9.9 nm and w =5.8 nm as shown in Fig. 1. Two layers of atoms on the top and bottom are fixed 
and four layers of thermostat atoms closed to the fixed layers are set to dissipate any excess heat 
generated during the tensile loading and thus the system maintains a set temperature. The Tersoff 
potential [19] is used to model the interaction between the carbon atoms. 

 
Fig. 1. Schematics of MD of graphene sheets subjected to a uniaxial tensile loading. 

  

To determine Young’s modulus and Poisson’s ratio of graphene sheets, the boundary 
atoms on the bottom edge of the system are fixed and a positive displacement l with a stretch 
rate of 5 m/s in the z direction when the force F is applied to the atoms on the top edge. A 
nonlinear relation between the tensile stress z  in the z direction and the strain z  can be 
expressed as follows:  

2
z z zE D                                        (1) 

where E and D are, respectively, the Young’s modulus and the nonlinear elastic modulus of the 
graphene sheets. The presence of the second-order term leads to a decrease of stiffness and the 
value of D is typically negative [20]. z  can be calculated through F/A, where A = w h 
represents the cross-sectional area and h denotes the thickness of the graphene sheets, which is 
usually taken as 0.34 nm. The tensile strain z  is obtained from /z l l   . In addition, Poisson’s 
ratio   can be obtained from the following equation: 
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where y  is the lateral strain in the y direction and is determined from /w w . 
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