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Semiconductor quantum dot have got scientific interest because of their unique electronic 
nature. In this article, an isolated square bipyramidal gallium arsenide (GaAs) quantum dot 
has been optimized using DFT method. The size of quantum dot was 1.2 nm2 (square base) 
and 1.7nm height and consisted of total 84 atoms. The quantum dot was optimized using 
hybrid B3LYP functional and SBKJC pseudo potential basis sets. The electrostatic 
potential surface around the optimized GaAs quantum dot was plotted and the result 
showed the potential on the pyramid surface was polarized with two positive and negative 
surfaces. This potential was due electronic and nuclear charge of different arrangement on 
the surface structure of the dot. 
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1. Introduction 
 
Electrostatic potential is associated with a charge distribution and can be defined as the 

potential energy of a test particle per unit charge of the particle. At molecular level, the 
electrostatic potential has been studied to determine the interaction of the molecule with its 
surrounding. The electrostatic potential study also explains the electronic distribution and structure 
formation of a molecule. Various studies about molecular electrostatic potential have been carried 
out to enlighten the behavior and interaction of the molecules to its environment.  In chemical and 
biological field this phenomenon has been employed to studying the interaction of molecule such 
as protein, DNA and vaccine [1-5]. In physics it is mainly focused towards the electronic part such 
as the interaction of potential energy surface with charge particle and the development of 
nanodevices. Lis et.al have studied gated quantum dot to tune the confinement potential for 
nanodevices [6]. Whereas, the others groups measured the potential distribution around probe tip 
as instrument development [7-8]. 

The focus of the present study is to explore the role of electrostatic potential in Single 
Electron Transistor (SET), which is vital in SET development. The main phenomenon behind the 
working of SET is tunneling of electron. Many studies have been conducted to simulate the 
tunneling phenomena [9-12] and Boese et.al has concluded in their study that the electron 
tunneling through molecular nano-devices is inevitably controlled by its electronic and mechanical 
structure [13]. Due to quantum mechanical behaviour of tunneling, the interaction of the single 
electron tunneling to the quantum dot is still unclear. In this paper, the electrostatic potential 
surface around isolated GaAs bipyrimidal quantum dot is presented. This study will give an insight 
on behavior of the single electron interaction with the quantum dot during the tunneling to the 
quantum dot process. 
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In figure 2 (a) and (b), the electrostatic contour value is large which means the potential 
surface should be just around the nucleus of Ga and As atoms. The contribution of the positive 
potential was mainly by the positive charge in the nucleus. As the value of electrostatic potential 
decreases, the isosurface expands further from the atomic coordinates and the negative value of 
electrostatic potential is emerged (blue) such as in figure 2 (c) and (d). This electrostatic potential 
surface now influences by the electronic part of the dot. 

The electrostatic potential surface (figure 2 (c) and (d)) is mainly due to the 
electronegativity and partial charges of the element in the dot. Since the As element is closer to 
Fluorine in the periodic table, therefore, As atoms are more electronegative than Ga. At the same 
time electronegativity of atoms in molecules indicates likelihood of the partial charges to be found. 
The most electronegative atoms are most negative, the other are less or more positive. 

In this particular quantum dot, there were two type surface structures and lets concentrates 
on the top square pyramid of the dot. First one consists of As atoms only as shown in the left and 
right faces of the top pyramid from the front view (figure 1 (b)). The second surface consists of 
both Ga and As atoms at the left and right face of the top pyramid from the side view (figure 1(a)). 
Thus it is clear that the surface with the As atoms is more electronegative than the other one. The 
more positive side has Ga on the surface thus more nuclei on the surface which contribute to the 
more positive potential. This positive region also indicates that the nuclear charge in this area is 
incompletely shielded by the electrons. 

 
 
4. Conclusions 
 
An isolated bipyramid GaAs quantum dot has been optimized. Its structure is zincblende 

just like the bulk GaAs material’s structure. The dot has two different surface structures from the 
eight surface of the bipyramid. This arrangement gives the different (positive and negative) 
potential surface around the dot. The potential is due to the distribution of the Ga and As atoms on 
the surfaces of the quantum dot. The electronegativity of As atoms contribute to negative potential 
surface and the positive potential around the dot is contributed from the lack of electron shielding 
on the surface. The results give an insight on how the electrons will travel towards the square 
pyramidal shape quantum dot and this result will give good geometrical information for SET 
development. 
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