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Effects of silver and copper nanoparticles on wood drying of poplar boards were studied. 
The boards were cut by two patterns of flat-sawn and quarter-sawn, as well as three 
thicknesses of 2.5, 5 and 7.5 cm. They were divided in three groups of nanosilver-
impregnated (NS), nanocopper-impregnated (NC), and control treatments. NS and NC 
boards were first impregnated with nanosilver and nanocopper suspensions, respectively; 
they were then dried in a laboratory convective kiln along with the control boards. The 
drying rate above and below the fiber saturation point (FSP), moisture content gradient 
slope, and drying residual stresses were measured. The results revealed higher drying rate 
both above and below the FSP in nanometal-impregnated boards. Also, less residual stress 
and moisture gradient slope were observed in NS and NC boards. It may then be 
concluded that nanometal particles may have the potentiality in improving the drying 
conditions and decreasing drying stresses in convective kilns.  
 
(Received August 17, 2012; Accepted October 16, 2012) 
 
Keywords: Wood drying, Nanotechnology, Poplar, NanoSilver (Ag), NanoCopper (Cu) 

 
 

1. Introduction 
 
Many researches have been carried out with regard to the use of nanoparticles in different 

sciences (Abedini et al., 2012; Dashti et al., 2012a,b; Geoprincy et al., 2011; Gogoi & Deb, 2012; 
Korayem et al., 2012; Prodana et al. 2011; Heidarpour et al. 2011; Sima & Sima, 2012; Taghiyari, 
2011a,b,c; Rassam et al., 2011; Taghiyari et al., 2011a; Taghiyari et al. 2012a,b,c,d; Taghiyari 
2012; Teoh et al., 2010; Wei et al., 2012; Yu et al., 2012). Research in nano-science, given the size 
of particles in nano-scale, has led to progress of materials and structures in improvement of 
physical and chemical properties of wide range of materials (Wegner et al., 2005; Wegner and 
Jones 2006). In this connection, due to the alteration of wood quality by rotation period, mono- or 
mixed-species cultivation, light and soil, as well as interaction between clone-type and site (Ajala 
& Ogunsanwo, 2011), and the quality of wood can be affected by rotation period, mono- or mixed-
species cultivation, light and soil, initial spacing, as well as interaction between clone-type and site 
(Addo-Danso et al., 2012; Barna, 2011; Girma & Mosandl, 2012; Jans et al., 2012; Luo et al., 
2012; Oke et al., 2012; Taghiyari et al., 2010; Taghiyari & Sarvari Samadi, 2010; Taghiyari & 
Efhami, 2011; Taghiyari et al. 2011b; Tenorio et al. 2012), the advantage of composite-boards, as 
a homogeneous material without restrictions as to the shape and size (Uetimane & Ali, 2011), and 
the recent studies to find methods for limitation of formaldehyde emission (Valenzuela, 2012; 
Stockel et al. 2012) and their other shortcomings, is becoming more and more conspicuous to the 
industry.                  
_____________________________________ __________                         
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In this way, wood fiber nano-composites with favorable properties have been extensively 
developed (Yeh and Gupta 2008; Nakagaito and Yano 2008). Lei et al. (2006) added nano SiO2 
into gypsum particleboard to improve the mechanical properties of the board. Jinshu et al. (2007) 
showed that a compound comprised of urea-formaldehyde (UF) resin and nano-SiO2 improved 
general properties of poplar wood. In a research by Lei et al. (2006) on plywood, it was shown that 
adding the nanoclay NaMMT to UF resin results in increased water resistance. Leach and Zhang 
(2004) used nanoparticles of copper-carbonate and iron oxide inaqueous systems for preservative 
treatment of wood. Kartal et al. (2009) found that nanozinc possessed favorable properties for 
wood preservation, such as leach resistance, termite mortality, and inhibition of termite feeding 
and decay by white-rot fungus. Giorgi et al. (2006) investigated on nanotechnologies for the 
conservation of waterlogged wood. Wang et al. (2006) used nanoindentation as a tool for 
understanding nano-mechanical properties of wood cell wall and biocomposites. Henriksson et al. 
(2008) used wood nanofibrils to prepare porous cellulose nanopaper of remarkably high 
toughness. Clausen (2007) investigated the role of nano-technology in wood preservation and 
concluded that silver, zinc and copper nanoparticles have high transmittance and low viscosity 
which allow them to distribute uniformly. Shah et al. (2010) also investigated the effect of copper 
and iron nano-particles on production of destructive lignocellulosic enzymes by Trametes 
versicolor. Results indicated that these nanoparticles have significant effect on production of these 
enzymes in the white rot fungi. Matsunaga et al. (2007) reported that the amount of copper 
particles was more seen in middle lamella rather than in secondary cell wall. In addition, the large 
number of copper particles was seen in S3 layer, as well as in cell pores which in presence of 
copper in cell walls extremely differed (entrance of silver nano-particles into secondary wall is 
almost infeasible). 

Taghiyari (2011b) studied the effect of nano-silver on permeability of particleboard. 
Results showed that silver nanoparticles addition which added at two levels has significantly 
reduced permeability degree of particleboard. He considered the reduced permeability as a result 
of better polymerization of adhesive. Taghiyari et al. (2011) investigated the effect of silver 
nanoparticles on improvement of press time and mechanical properties of particleboard. Results 
indicated that heat-transfer properties of silver nanoparticles (Narashimha et al. 2011; Sadeghi & 
Rastgo, 2012) lead to reduction in press time. Besides, reduction of thermal gradient improves 
mechanical properties of particleboard as well. Despite numerous researches in usage of nano-
technology in wood industry, few researches have been yet carried out with regard to this 
comprehensive science in the field of wood drying. In this research, application potential of copper 
and silver nanoparticles in the wood drying process is investigated. 

 
 
2. Materials and methods 
 
Specimen Preparation 
Freshly-cut poplar (Populus nigra) logs belonging to a forest close to Taleghan city in Iran 

were studied. Boards were cut in two patterns: flat-sawn and quarter-sawn. For each sawing 
pattern, boards were cut in three thicknessesof 2.5, 5, and 7.5 cm while green. The width and 
length of boards were 10 and 15 cm, respectively. 

 
Nanoparticles 
200 ppm aqueous nanosilver (NS) and nanocopper (NC) suspension were produced using 

an electrochemical technique in cooperation with Iran Nanopooshesh Company. In nanoparticles 
manufacturing de-ionized water was used as a beginner, NaBH4 as a reducing agent and TADDD 
as a stabilizer.  

 
Impregnation of the boards 
The impregnation of the boards with nanosilver (NS) and nanocopper (NC) suspensions 

was carried out by immersion method. Green Specimens were immersed in the suspensions for 
about 30 minutes. Immediately after the impregnation, the boards were coated on their four sides 
with epoxy resin to confine the moisture transfer only along the board thickness. 
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Drying Procedure  
The boards were dried at aconstant dry-bulb temperature of 60oC and relative humidity 

(RH) of 40% (EMC ≈ 8%) using a laboratory convective kiln. The drying process was terminated 
without any conditioning treatment. Table 1 illustrates the design of experiments and the number 
of replications. 
 

Table 1. Design of experiments and the number of replications tested for each drying condition. 

Board type 
Thickness 

(mm) 
Control 

NS1-
impregnated 

NC2-
impregnated 

 25 3* 3 3 

Flat-sawn 
board 

50 3 3 3 

 75 3 3 3 

 25 3 3 3 

Quarter-sawn 
board 

50 3 3 3 

 75 3 3 3 

*replications 
1NanoSilver 
2NanoCopper 
 

Residual stresses 
Prong test was used to determine the degree of drying residual stresses (casehardening). 

Two U-shaped prongs were taken from each dried board to assess drying stresses. The stress 
prongs were cut in full thickness and width of the board and 20 mm along its length. Fig.1 shows a 
schematic picture of prong cutting for measurement of drying stresses. Prong response (PR) was 
calculated using the following Equation (Fuller 1995): 

2

'

l

xx
PR


                                                                     (1) 

 
where: PR is prong response (mm-1), x is distance between outerprong edges before the prong cut 
(mm), x′ is distance between outer prong edges after the prong cut (mm), and l is the length of the 
sample’s prong (mm). The prong tip distance was recorded before and after cutting. The influence 
of immediate change in surface moisture content of the prongs was neglected. 
 

Drying rate and moisture content gradient 
 
Drying rate was measured by weighing the boards during drying process. After drying, 

dried boards were sliced through the thickness to determine final MC profiles (Fig. 1). 
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immersion in silver and copper suspensions resulted in increased drying rate within hygroscopic 
range at the all thicknesses. Treating samples by silver suspension was resulted in higher drying 
rate. Not many studies have been done with regard to effect of silver and copper nanoparticles on 
the drying rate. Taghiyari (2011a) investigated the effect of silver nanoparticles in thermal 
treatment on poplar (populous nigra). His findings revealed that silver nanoparticles have 
increased thermal conductivity in wood; consequently the results of heat-treatment were 
intensified. In another study, Taghiyari et al. (2011a) showed that addition of silver nano-particles 
has improved thermal conductivity in particleboards. The results indicated that properties of silver 
nanoparticles concerning their thermal conductivity may lead to reduced press time and improved 
physical and mechanical properties. The heat conductivity of silver nanoparticles is also reported 
to improve resin polymerization in the center of the mat, resulting in decrease in gas and liquid 
permeability (Taghiyari, 2011b). 

 
Table 2. Drying rate above FSP in control and treated samples. 

 

Treatment 
Thickness 

25 mm 50 mm 75mm 

F
la

t-
sa

w
n Control 

1.991 
(0.198)* 

1.054 
(0.318) 

0.811 
(0.221) 

NS 
2.945 

(0.937) 
1.182 

(0.273) 
0.877 

(0.046) 

NC 
1.935 

(0.203) 
1.355 

(0.044) 
0.847 

(0.041) 

Q
ua

rt
er

-s
aw

n Control 
1.577 

(0.265) 
0.837 

(0.163) 
0.550 

(0.254) 

NS 
2.180 

(0.098) 
1.124 

(0.122) 
0.577 

(0.019) 

NC 
2.052 

(0.076) 
 0.998 
(0.110) 

0.585 
(0.254) 

*standard deviation  
 

Table 3. Drying rate below FSP in control and treated samples 
 

Treatment Thickness 
25 mm 50 mm 75mm 

F
la

t-
sa

w
n 

Control 0.668 
(0.139)* 

0.375 
(0.023) 

0.293 
(0.033) 

NS 0.810 
(0.101) 

0.362 
(0.109) 

0.396 
(0.094) 

NC 0.680 
(0.141) 

0.299 
(0.081) 

0.292 
(0.010) 

Q
ua

rt
er

-s
aw

n Control 0.253 
(0.055) 

0.343 
(0.068) 

0.154 
(0.037) 

NS 0.550 
( 0.121) 

0.517 
(0.130) 

0.336 
(0.008) 

NC 0.400 
(0.097) 

0.396 
(0.044) 

0.240 
(0.017) 

*standard deviation  
 

Moisture content gradient and residual stresses 
Results indicated that with increase in board thickness, MC gradient slope becomes more 

intensive (Table 4). The boards impregnated with nanosilver had more homogeneous MC gradient 
along the thickness compared to that of control boards. Nanoparticles speeded up the heat transfer 
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to the core of the board and further increased the temperature in these layers against the control 
specimens. In wood drying process, greater homogeneity of MC gradient in the dried boards is of 
high importance. Presence of extreme MC gradient in dried boards in addition to aggravation of 
wood drying stresses, leads to occurrence of various deformations in them during machining. 
Slower moisture flux from inner partsin the thick boards leads to occurrence of grave MC gradient 
in the dried boards. Therefore, as a result of nanosilver treatment and quicker transfer of moisture 
from the boards' inner parts to their surface layers, more homogenous MC gradient is developed in 
the dried boards. 

Results of internal stresses are presented in Table 5. The results indicate reduced internal 
stresses in the boards treated by nanoparticles. Since MC gradient slope is one of the determinants 
of internal stresses, MC gradient improvement has led to reduced internal stresses in the treated 
samples compared to the control samples. The main reason for creation of the internal stresses was 
the difference in the shrinkage times of superficial and internal layers during the drying process. 

Differential shrinkage between the shell and core of board also causes drying defects. 
Early in the drying process, the fibers in the shell (the outer portion of the board) dry first and 
begin to shrink. However, the core has not yet begun to dry and shrink, and consequently the core 
prevents the shell from shrinking. Thus, the shell goes into tension and the core into compression 
(Simpson 1991). As regards, addition of silver nanoparticles and more speedy transfer of heat to 
the inner parts lead to the reduced difference in shrinkage time between superficial and internal 
layers and consequently resulted in the decrease in the internal stresses in the dried boards. 
 

Table 4. MC gradient slope through the thickness of control and treated samples (% mm-1) 
 

Treatment Thickness 

25 mm 50 mm 75mm 

F
la

t-
sa

w
n 

Control 0.063 
(0.009)* 

0.092 
(0.060) 

0.105 
(0.013) 

NS 0.052 
(0.011) 

0.060 
(0.003) 

0.069 
(0.036) 

NC 0.025 
(0.008) 

0.051 
(0.020) 

0.073 
(0.012) 

Q
ua

rt
er

-s
aw

n Control 0.040 
(0.008) 

0.105 
(0.039) 

0.322 
(0.079) 

NS 0.039 
( 0.017) 

0.089 
(0.023) 

0.147 
(0.007) 

NC 0.015 
(0.004) 

0.098 
(0.027) 

0.092 
(0.016) 

*standard deviation  
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Table 5. Drying stress values in control and treated samples. 
 

Treatment Thickness 
25 mm 50 mm 75mm 

F
la

t-
sa

w
n 

Control 0.0092 
(0.0037)* 

0.0258 
(0.01392) 

0.0035 
(0.0028) 

NS 0.0121 
(0.0061) 

0.0174 
(0.0069) 

0.0036 
(0.0012) 

NC 0.0124 
(0.0053) 

0.0139 
(0.0088) 

0.0032 
(0.0054) 

Q
ua

rt
er

-s
aw

n Control 0.0042 
(0.0023) 

0.0191 
(0.0092) 

0.0195 
(0.0084) 

NS 0.0074 
( 0.0021) 

0.0196 
(0.0102) 

0.0142 
(0.0091) 

NC 0.0052 
(0.0013) 

0.0152 
(0.0096) 

0.0153 
(0.0103) 

*standard deviation  
  

Cluster analysis of the six treatments of 25-mm-boards based on the four criteria measured 
in the present study (drying rate above FSP, drying rate below FSP, MC gradient slope, and drying 
stress) showed that quarter-sawn (QS) nanosilver-impregnated boards were closely clustered with 
flat-sawn (FS) control boards (Fig. 2). This may indicate the potentiality of silver nanoparticles in 
improving the drying conditions of QS boards. However, QS-NC-impregnated specimens are 
clustered closely to QS-control specimens. As to the less heat conductivity of copper in 
comparison to silver, it may be concluded that copper nanoparticles did not have the potentiality in 
improving the drying conditions of QS-boards to be clustered to FS-boards in 25-mm thickness. 
 
 

 
 

Fig. 2. Cluster analysis of 25-mm-boards based on drying rate above FSP, drying rate below 
 FSP, MC gradient slope, and drying stress (FS=Flat-sawn; QS=Quarter-sawn) 

 
 In 50-mm-boards, the same overall increase in drying conditions is seen (Fig. 3); that is, 
QS-NS-boards are clustered with FS-control specimens, and also QS-NC-boards are clustered with 
QS-Control boards.  

 
 

 
 

Fig. 3. Cluster analysis of 50-mm-boards based on drying rate above FSP, drying rate below FSP, MC 
gradient slope, and drying stress (FS=Flat-sawn; QS=Quarter-sawn) 
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In 75-mm boards (Fig. 4), QS-NS and NC boards are clustered rather differently with QS-control 
specimens; but not much dissimilarity is seen in FS-treatments. This may show that the effect of 

nanometals may be more significant in quarter-sawn boards.  

 
Fig. 4. Cluster analysis of 75-mm-boards based on drying rate above FSP, drying rate below FSP, MC 

gradient slope, and drying stress (FS=Flat-sawn; QS=Quarter-sawn) 
 
 

4. Conclusions 
 
The obtained results revealed that silver and copper nanoparticles, due to their high 

thermal conductivity coefficients, lead to more speedy transfer of ambient temperature of kiln to 
the board’s inner parts and consequently to the improvement of wood drying process. 
Impregnation with nanosilver and nanocopper resulted in the increased drying rate of boards 
within free water and bound water range. Perhaps, the high thermal conductivity of the 
nanoparticles has led to an increase in the temperature of the inner layers of the impregnated 
boards, resulting in the reduction of MC gradient slope. Furthermore, the decrease in MC gradient 
slope led to the reduced internal stresses in the dried boards. In general, the decrease in MC 
gradient slope and internal stresses had positive effects and improved the quality of the dried 
boards. It may then be concluded that silver and copper nanoparticles may have the potentiality in 
improving the drying quality in convective wood-drying kilns.  
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