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Alumina (Al2O3) films of 800 nm thicknesses were obtained by pulsed laser deposition 
method. The chemical composition and the morphology of as grown films were 
investigated by Energy Dispersive X-ray spectroscopy (EDX), Scanning Electron 
Microscopy, Atomic Force Microscopy and optical transmittance spectroscopy (OTS) 
techniques. EDX results show a stoichiometric transfer between target and substrates and 
the bandgap energy and refractive index obtained by OTS were found to be in good 
agreement with the bulk values. Dielectric characterizations of Al2O3 films were 
performed, in a sandwich structure using titanium (Ti) as back electrodes (100 nm) and 
aluminum (Al) as top electrodes (100 nm). The temperature dependence of permittivity 
and dielectric losses of Ti/Al2O3/Al capacitors have been measured between 123 - 423 K at 
selected frequencies in the 42 Hz - 5 MHz ranges. The dielectric constant of Al2O3 
determined from capacitance measurements was found to be around 8.3 at 273 K. The 
temperature and frequency dependence of both the permittivity and dielectric loss values 
are weak in the investigated temperature and frequencies ranges.  
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1. Introduction 
 
Dielectric films with a large relative permittivity are of great importance in a variety of 

electronic applications, based on metal-oxide-semiconductor (MOS) technology. In the race to find 
a better replacement for silicon dioxide in MOS devices, oxides of hafnium and aluminium have 
emerged as leading candidates [1]. Robertson and Peacock have shown that alumina (Al2O3) has 
excellent conduction and valence band offsets on contact with Si [1, 2]. This makes Al2O3 ideally 
suited for use with n- and p-type Si over a range of doping levels. There is however a disadvantage 
in using Al2O3 in MOS structures, as compared to other high-k dielectrics: its intermediate 
dielectric constant limits the capacitance density [3].  

In spite of that, Al2O3 has many interesting physical properties that make it suitable for 
thin film applications. Because of their good transmittance in the visible region and chemical 
stability, Al2O3 films are widely used as antireflective and protective coatings [4] and also for 
transparent electronic device applications [5]. Different techniques were used to produce alumina 
thin films: atomic layer deposition [6-8], chemical vapour deposition [9], magnetron sputtering, 
and pulsed laser deposition (PLD).  

                                                            
* Corresponding author:santohe@solid.fizica.unibuc.ro 
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The morphology of the film surface was analyzed by SEM and AFM (in non-contact 
mode). Optical transmission spectra were measured at room temperature, by using a Perkin-Elmer 
Lambda 35 spectrometer. 

 
3. Results and discussions 
 

 
 

Fig.2 AFM images obtained for PLD alumina (800 nm). 
 

The AFM images (fig. 2) of the alumina thin films deposited at room temperature by PLD, 
and the SEM images (fig.3) of  the same films show an average diameter of grains of about 50 nm.  

 

 
 

Fig.3 SEM  images obtained for PLD alumina (800 nm) 
 

 
The parameters describing the surface morphology, as extracted from AFM scans, were 

collected in Table 2. The surface has a typical roughness for PLD, and is relatively flat, with 
extreme peaks (as indicated by the value greater than one of Ssk), characterized by a sharp 
distribution, as revealed by the large value of Sku.  
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Table 2 Alumina PLD AFM  parameters 

 
Root Mean Square, Sq 2.7 nm 
Surface skewness, Ssk 6.0 

Coefficient of kurtosis, Sku 55.8 
 

Energy Dispersive X-ray spectroscopy (EDX) results (Fig.4) show a stoichiometric 
transfer from target to film. 
 
 

 
 

Fig.4 Results of EDX investigation of a PLD alumina film (800 nm thick). 
 

 Optical properties of the films were characterized by recording their transmittance 
spectra, shown in Fig. 5. In the visible region, the average transmittance of the Al2O3 films on 
glass varies from about 84% to 90%. The sharp absorption edge in the wavelength range 280-300 
nm is due to the glass substrate.   

 
 

Fig.5 Transmittance spectra of Al2O3 films and glass (inset- thickness for Al2O3 film) 
 

The dispersion of refractive index n was extracted from fringes data in the transmitting 
region using Swanepoel’s theory [10,11], and is shown in Fig.6. 
 
 

d=800nm

Element Wt % At %

O K 50.51 63.25

AlK 49.49 36.75

Element Wt % At %

O K 50.51 63.25

AlK 49.49 36.75
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Fig 6 Refractive index dispersion of the alumina thin films. 
 

For dielectric characterizations, Al2O3 films were deposited on Ti electrodes (100 nm). 
After thermal treatments at 300 oC for half hour, a top Al electrode was deposited and dielectric 
measurements were carried out on Ti-Al2O3-Al capacitors, by using a RLC automatic bridge 
(Hioki-3532). The temperature dependence of permittivity and dielectric losses of capacitors were 
measured in the range 123 - 423 K, at selected frequencies in the 42Hz - 5MHz domain.  
The dielectric constant of Al2O3 determined from capacitance measurements was found to be 
around 7.2 at 273 K. Lower dielectric losses values, fewer than 1 %, were found at 10 kHz. A good 
stability of the permittivity and loss values was found in the investigated temperature and 
frequency ranges.  

 
Fig 7 Temperature dependence of permittivity and dielectric losses of capacitors  

in the range 123K – 423 K (10 kHz). 
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4. Conclusions 
 
Al2O3 films, 800 nm thick, were successfully obtained by pulsed laser deposition (PLD) 

method. The films show a good chemical composition as demonstrated by EDX data, and a 
relatively smooth surface, characterized by the presence of some extreme grains with sharp 
distributions.  

The dielectric constant of alumina films determined from capacitance measurements, was 
found to be around 7.2 at 273 K and increases monotonically with the temperature in the range 123 
- 423 K. Lower dielectric losses values under 1 % were found at 10 kHz.  
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