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1. Preliminaries 
 
Let G be a simple graph with vertex set  and edge set . The function 

 which assigns to each pair of vertices  in , the length of 
minimal path from  to , is called the distance function between two vertices. The distance 
function between and edge and a vertex is  where for  
and. , . 

The Wiener index of a graph  is denoted by  and is defined by 
.In general this kind of index is called a topological index, which is a 

distance based quantity assigned to a graph. This is an invariant of the graph  in the sense that if 
a graph H is isomorphic to  then . The Wiener index for the first time was 
introduced by H. Wiener in [11] and is related to chemical substances. The definition of the 
Wiener index in terms of distance between vertices of a graph for the first time was given by 
Hosoya in [6]. This index is extensively studied by various authors, and we may refer the reader to 
[5] and [1] in which a new method is found to calculate the Wiener index of a graph. 

Another index that will be investigated in this paper is the Szeged index, which is defined 
as follows: 

 
where for the two vertices  and  we define 

 
and . The set  and the quantity  is defined similarly. We refer the 
reader to [4] to see more properties of the Szeged index of a graph. 
Similar to the definition of the Szeged index we define the vertex PI-index as follows 

. 
For more information we refer the reader to [8]. 
Since a bipartite graph  has no cycle of odd length, for each edge  we have 

, 
and if  is not bipartite, then there is an edge  such that  . Hence 
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, 

 
and it is proved in [8] that the equality  holds if and only if  is bipartite. 
If  has  vertices, then 

 
where  denotes the complete bipartite graph. For more details see [2] and [10]. 
Another index that we will define here is the edge PI-index which was defined in[9]. In a graph  
two edges  and  are called parallel, and is written by symbol , if 

. 
In general the relation  is not reflexive, but in a bipartite graph it is reflexive. We set 

, 
and , and define  and  similarly. Furthermore, for and edge  
we define 

 
. 

Next we define the edge PI-index as follows: 

 

 
 
2. Main results 
 
In this section our aim is to compute the above indices for a new type of 

phenylazomethine dendrimer with a tetraphenylmethane core which is investigated in [3] whose 
graph is given below and is denoted by , where . In figure 1 below the graph 

 are drawn in such a way that . 

 
Fig. 1.  structure of the TPM dendrimer. 
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The graph  has 4 arms, and we choose one of the arms and call it . Clearly  is a 
subgraph of  and in figure 2 the graphs  are drawn. 

 

 
 

Fig. 2.  a subgraph of  
 
With this setting the graph  is obtained by joining four copies of  together. Both graphs  
and  are bipartite because they don’t include an odd cycle. 
 
 
If  and  denote the number of vertices in  and  respectively then it is easy to find that 

 
 

We want to compute the mentioned indices of the graph  using a new method. To do this we 
will introduce the following concept. 

Definition 1. Let  be a simple graph. A subgraph  of  is called convex if for every 
two vertices  and  in , then  contains all the edges and vertices of all the minimal paths from 

 to  in . 
Theorem 1. Let  be a simple graph. If there exists a partition of the edge set of  like  
such that  is a graph with two connected components  and , , and each of  
and  is a convex graph then 

 

 

 
Proof. For the proof we refer the reader to [7] and [12]. 
Theorem 2. . 
Proof. It is proved in [8] that if  is bipartite graph, then . Therefore to 
calculate  it is enough to compute the number of edges of . But the number of edges of 

 is easily computed as 
. 

Hence using. .the result follows.  
Theorem 3. . 
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Proof. In the graph  if we delete an edge which is not contained in a cycle, we will obtain a 
graph with two components. Since each edge acts as a bridge, the two components are convex. 
From the other hand in each cycle  contained in , for each edge there is a different edge of  
which is parallel to it. If we delete and edge of  and the edge parallel to it, then we again will 
obtain a graph with two components such that each component is a convex subgraph of . 
Hence, in this way we will obtain a partition  of the edge set of  which satisfies the 
conditions of Theorem 1. Furthermore we have 

 
It can be calculated that the number of edges in  cycles contained in  is equal to 

, the rest of edges of , , are not 
contained in any cycle. Therefore using Theorem 1  we can write 

 
.  

Theorem 4. . 
Proof. Let us fix the notation used in the proof of Theorem 3. If  and , then 
one of the components of  has either  or  vertices, and the other component has 
either  or  vertices respectively. 
The number of such edges  is  or  respectively, where  . 
For these edges we can write 

 

 
. 

Now if , one of the components of  has  vertices and the other component 
has  vertices and the number of such edges is equal to  where . 
Therefore 

 
 

Now we have 4 more edges that are not contained in ,  . 
By Theorem 1  we can write: 

 , 
and by substituting the values of , , , and  the result will be proved.  
Theorem 5. . 
Proof. By Theorem 1  we can write , and 
again by substituting the result follows.  
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