THE WIENER, SZEGED AND PI-INDICES OF A PHENYLAZOMETHINE DENDRIMER

M. GOLRIZ^a, M. R. DARAFSHEH^{b*}, M. H. KHALIFEH^b

^aIslamic Azad University, Tehran South Branch, Tehran, Iran

^bSchool of Mathematics, College of Science, University of Tehran, Tehran, Iran

A new type of phenylazomethine with a tetraphenylmethane core which was first investigated by Osamu Enoki et. al. is considered and its topological indices such as Wiener, Szeged and PI-index are found using a new method.

(Received August 22, 2011; accepted October 5, 2011)

1. Preliminaries

Let G be a simple graph with vertex set V(G) and edge set E(G). The function $d:V(G)\times V(G)\to \mathbb{N}\cup\{0\}$ which assigns to each pair of vertices x,y in V(G), the length of minimal path from x to y, is called the distance function between two vertices. The distance function between and edge and a vertex is $d':E(G)\times V(G)\to \mathbb{N}\cup\{0\}$ where for $e=uv\in E(G)$ and $u\in V(G)$, $u'(e,w)=\min\{d(u,w),d(v,w)\}$.

The Wiener index of a graph G is denoted by W(G) and is defined by $W(G) = \sum_{\{u,v\} \subseteq V(G)} d(u,v)$. In general this kind of index is called a topological index, which is a distance based quantity assigned to a graph. This is an invariant of the graph G in the sense that if a graph H is isomorphic to G then W(H) = W(G). The Wiener index for the first time was introduced by H. Wiener in [11] and is related to chemical substances. The definition of the Wiener index in terms of distance between vertices of a graph for the first time was given by Hosoya in [6]. This index is extensively studied by various authors, and we may refer the reader to [5] and [1] in which a new method is found to calculate the Wiener index of a graph.

Another index that will be investigated in this paper is the Szeged index, which is defined as follows:

$$Sz(G) = \sum_{\sigma = uv \in E(G)} n_u(v) n_v(u)$$

where for the two vertices \mathbf{u} and \mathbf{v} we define

$$N_u(v) = \{w \in V(G) | d(v, w) < d(u, w)\}$$

and $n_u(v) = |N_u(v)|$. The set $N_v(u)$ and the quantity $n_v(u)$ is defined similarly. We refer the reader to [4] to see more properties of the Szeged index of a graph.

Similar to the definition of the Szeged index we define the vertex PI-index as follows

$$PI_v(G) = \sum_{e=uv \in E(G)} [n_u(v) + n_v(u)]$$

For more information we refer the reader to [8].

Since a bipartite graph G has no cycle of odd length, for each edge e = ur we have

$$N_u(v) \cup N_v(u) = V(G)$$

and if G is not bipartite, then there is an edge e = ab such that $N_a(b) \cup N_b(a) \subset V(G)$. Hence

_

^{*} Corresponding author: darafsheh@ut.ac.ir

$$PI_v(G) \leq |E(G)||V(G)|,$$

and it is proved in [8] that the equality $PI_v(G) = |E(G)||V(G)|$ holds if and only if G is bipartite. If G has n vertices, then

$$Sz(G) \leq Sz(K_{\lfloor \frac{n}{2} \rfloor \lfloor \frac{n}{2} \rfloor})$$

where $K_{r,s}$ denotes the complete bipartite graph. For more details see [2] and [10].

Another index that we will define here is the edge PI-index which was defined in [9]. In a graph G two edges e = uv and f are called parallel, and is written by symbol $e \parallel f$, if

$$d'(f,u) = d'(f,v).$$

In general the relation **■** is not reflexive, but in a bipartite graph it is reflexive. We set

$$M_u(v) = \{e \in E(G) | d'(e, u)d'(e, v)\},\$$

and $m_u(v) = |M_u(v)|$, and define $M_u(v)$ and $m_u(v)$ similarly. Furthermore, for and edge e = uv we define

$$n(e) = |\{f \in E(G)|e \parallel f\}|$$

 $m_u(v) + m_v(u) = |E(G)| - n(e).$

Next we define the edge PI-index as follows:

$$\begin{aligned} \text{PI}_{e}(G) &= \sum_{e=uv \in E(G)} [m_{u}(v) + m_{v}(u)] \\ &= |E(G)|^{2} - \sum_{e \in E(G)} n(e) \end{aligned}$$

2. Main results

In this section our aim is to compute the above indices for a new type of phenylazomethine dendrimer with a tetraphenylmethane core which is investigated in [3] whose graph is given below and is denoted by G_n , where $n = 0, 1, 2, \cdots$. In figure 1 below the graph $G_0 - G_4$ are drawn in such a way that $G_0 \subset G_1 \subset G_2 \subset G_3 \subset G_4$.

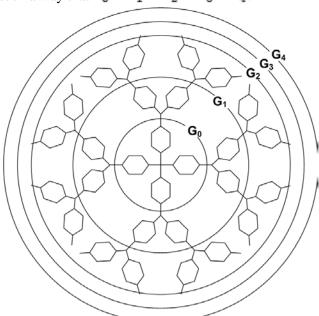


Fig. 1. structure of the TPM dendrimer.

The graph G_n has 4 arms, and we choose one of the arms and call it H_n . Clearly H_n is a subgraph of G_n and in figure 2 the graphs $H_0 - H_4$ are drawn.

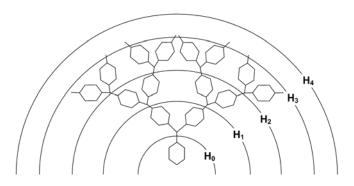


Fig. 2. H_n a subgraph of G_n

With this setting the graph G_n is obtained by joining four copies of H_n together. Both graphs G_n and H_n are bipartite because they don't include an odd cycle.

If g_n and h_n denote the number of vertices in G_n and H_n respectively then it is easy to find that

$$h_n = 7 \sum_{i=0}^{n} 2^i - 2^n = 13 \times 2^n - 7, n \ge 0,$$

$$g_n = 4h_n + 1 = 26 \times 2^{n+1} - 27, n \ge 0.$$

We want to compute the mentioned indices of the graph G_n using a new method. To do this we will introduce the following concept.

Definition 1. Let G be a simple graph. A subgraph K of G is called convex if for every two vertices u and v in K, then K contains all the edges and vertices of all the minimal paths from u to v in G.

Theorem 1. Let G be a simple graph. If there exists a partition of the edge set of G like $\{F_i\}_{i=1}^k$ such that $G - F_i$ is a graph with two connected components G_i^1 and G_i^2 , $1 \le i \le k$, and each of G_i^1 and G_i^2 is a convex graph then

(a)
$$W(G) = \sum_{i=1}^{k} |V(G_i^1)| |V(G_i^2)|$$
(b)
$$Sz(G) = \sum_{i=1}^{k} |V(G_i^1)| |V(G_i^2)| |F_i|$$
(c)
$$PI_g(G) = |E(G)|^2 - \sum_{i=1}^{k} |F_i|^2$$

Proof. For the proof we refer the reader to [7] and [12]. **Theorem 2.** $PI_{\nu}(G_n) = 3120 \times 4^n - 3284 \times 2^n + 864$.

Proof. It is proved in [8] that if G is bipartite graph, then $PI_v(G) = |E(G)||V(G)|$. Therefore to calculate $PI_v(G_n)$ it is enough to compute the number of edges of G_n . But the number of edges of G_n is easily computed as

$$|E(G_n)| = 4(|E(H_n)| + 1) = 15 \times 2^{n+2} - 32.$$

Hence using $PI_v(G_n) = |E(G_n)| |V(G_n)|$ the result follows. \blacksquare Theorem 3. $PI_s(G_n) = 3600 \times 4^n - 3948 \times 2^n + 1080.$

Proof. In the graph G_n if we delete an edge which is not contained in a cycle, we will obtain a graph with two components. Since each edge acts as a bridge, the two components are convex. From the other hand in each cycle C_6 contained in G_n , for each edge there is a different edge of C_6 which is parallel to it. If we delete and edge of C_6 and the edge parallel to it, then we again will obtain a graph with two components such that each component is a convex subgraph of G_n .

Hence, in this way we will obtain a partition $\{F_i\}$ of the edge set of G_n which satisfies the

 $|F_i| = \begin{cases} 1, & \text{if } F_i \text{ is not contained in a cycle,} \\ 2, & \text{if } F_i \text{ is a subset of a } C_6. \end{cases}$ It can be calculated that the number of edges in C_6 cycles contained in G_n is equal to $C = 24\sum_{i=0}^{n} 2^{i} = 24(2^{n+1} - 1)$, the rest of edges of G_n , $|E(G_n)| - C = 6 \times 2^{n+1} - 8$, are not contained in any cycle. Therefore using Theorem 1 (c) we can write

$$PI_{\epsilon}(G_n) = |E(G_n)|^2 - \sum_{i=1}^{|E(G_n)|-c} 1 - \sum_{i=1}^{\frac{\sigma}{2}} 4$$

 $= |E(G_n)|^2 - |E(G_n)| - C = 3600 \times 4^n - 3948 \times 2^n + 1080.$

Theorem 4. $W(G_n) = 13520n \times 4^n - 1820n \times 2^n - 14040 \times 4^n + 181616 \times 2^n - 3328$.

Proof. Let us fix the notation used in the proof of Theorem 3. If $F_i \subseteq E(H_n)$ and $|F_i| = 1$, then one of the components of $G - F_i$ has either $h_{\alpha} - 6$ or $h_{\alpha-1}$ vertices, and the other component has either $g_n - (h_{\alpha} - 6)$ or $g_n - (h_{\alpha-1})$ vertices respectively.

The number of such edges F_i is $4 \times 2^{n-\alpha}$ or $8 \times 2^{n-\alpha}$ respectively, where $0 \le \alpha \le n$.

For these edges we can write

$$\begin{split} S_n &= \sum_{\substack{|F_i|=1\\F_i\subseteq E(H_n)}} \big|V\big(G_i^1\big)\big|\big|V\big(G_i^2\big)\big| \\ &= 4\sum_{i=0}^{n-1} \big[2^i(h_{n-i}-6)\big(g_n-(h_{n-i}-6)\big) + h_{n-i-1}(g_n-h_{n-i-1})\big] \end{split}$$

 $= 9422 \times 2^{n} - 7644 \times 4^{n} - 728 \times n \times 2^{n} + 5408 \times n \times 4^{n} - 1848.$

Now if $|F_i| = 2$, one of the components of $G - F_i$ has $h_{\alpha} - 3$ vertices and the other component has $g_n - (h_{\alpha} - 3)$ vertices and the number of such edges is equal to $12 \times 2^{\alpha - 1}$ where $0 \le \alpha \le n$. Therefore

$$T_n = \sum_{|F_i|=2} |V(G_i^1)| |V(G_i^2)| = 4 \sum_{i=0}^n 3 \times 2^i \times (h_{n-i} - 3) (g_n - (h_{n-i} - 3))$$

= 11256 \times 2^n - 8424 \times 4^n - 1092n \times 2^n + 8112 \times n \times 4^n - 2040

Now we have 4 more edges that are not contained in $E(H_n)$, $(g_n - h_n)g_n = |V(G_i^1)||V(G_i^2)|$.

By Theorem 1 (a) we can write:

$$W(G_n) = S_n + T_n + 4h_n(g_n - h_n),$$

and by substituting the values of S_n , T_n , g_n , and h_n the result will be proved.

Theorem 5. $Sz(G_n) = 15548n \times 4^n - 2093n \times 2^n - 16146 \times 4^n + 2143 \times 2^n - 3838$

Proof. By Theorem 1 (b) we can write $Sz(G_n) = W(G_n) + T_n = S_n + 2T_n + 4h_n(g_n - h_n)$, and again by substituting the result follows.

Acknowledgement

This paper has been extracted from the research entitled "Computation of topological indices of phenylazomethine dendrimer" supported by the Islamic Azad University, Tehran South Branch.

Reference

- [1] M. R. Darafsheh, Acta Appl. Math., 110, 1225 (2010).
- [2] A. A. Dobrynin, Croat. Chemica. Acta, **70**, 819 (1997).
- [3] O. Enoki, H. Katoh, K. Yamamoto Organic Letters, **8**(4), 569 (2006).
- [4] I. Gutman, A. A. Dobrynin, Graph Theory Notes, NY 34, 37 (1998).
- [5] I. Gutman and O. E. Polansky, Mathematical concepts in organic chemistry, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1986.
- [6] H. Hosoya, Bull. Chem. Soc. Jpn. 4, 2332 (1971).
- [7] M. H. Khalifeh, H. Yousefi-Azari, A. R. Ashrafi, Another aspect of graph invariants depending on the path metric and an application in nano-science, accepted in Computers and Mathematics with Applications.
- [8] M. H. Khalifeh, H. Yosefi-Azari, A. R. Ashrafi, Disc. Appl. Math., Vol. 156 1780-1789.
- [9] P. V. Khadikar, On a novel structural descriptor, PI. Natl. Acad. Scri. Lett. 23, 113 (2000)
- [10] M. J. Nadjafi-Arani, G. H. Fath-Tabar, A. R. Ashrafi, Appl. Math. Letter, 22, 1838 (2009).
- [11] H. Wiener, Structural determination of paraffin boiling points, J. Amer. Chem. Soc. **69**, 17 (1974).
- [12] H. Yousefi-Azari, M. H. Khalifeh, A. R. Ashrafi, Calculating the Edge Wiener and Edge Szeged indices of graphs, submitted.