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In recent years, the use of nanoparticles (NPs) for improving the specificity and efficiency 
of the polymerase chain reaction (PCR) and exploring the PCR enhancing mechanism has 
come under intense scrutiny. In this study, the effect of titanium dioxide (TiO2) NPs in 
improving the efficiency of different PCR assays was evaluated. Transmission electron 
microscopy (TEM) results revealed the average diameter of TiO2 particles to be about 7 
nm. Aqueous suspension of TiO2 NPs was included in PCR, reverse transcription PCR 
(RT-PCR) and quantitative real time PCR (qPCR) assays. For conventional PCR, the 
results showed that in the presence of 0.2 nM of TiO2 a significant amount of target DNA 
(P<0.05) could be obtained even with the less initial template concentration. Relative to 
the larger TiO2 particles (25 nm) used in a previous study, the smaller TiO2 particles (7 
nm) used in our study increased the yield of PCR by three or more fold. Sequencing 
results revealed that TiO2 assisted PCR had similar fidelity to that of a conventional PCR 
system. Contrary to expectation, TiO2 NPs were unable to enhance the efficiency of RT-
PCR and qPCR. Therefore, TiO2 NPs may be used as efficient additives to improve the 
conventional PCR system.        
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1. Introduction 
  
The molecular biology techniques including conventional PCR, qPCR and RT-PCR have 

been recognised to be the standard industrial techniques for the qualitative and quantitative 
analysis of nucleic acids due to their high sensitivity and specificity. PCR and qPCR mimic the in 
vivo molecular process, DNA replication [1]. Both of these techniques require single or few copies 
of DNA template, the primer specific for targeting the sense and antisense strands, dNTPs, heat 
stable Taq polymerase, and magnesium ions in the buffer for the synthesis of target DNA 
sequence. Usually, the PCR assays are performed by cycling of denaturation (940C), annealing 
(~50-600C) and extension (720C) temperatures. The high temperature is applied to denature the 
strands of the double helical DNA by destroying the hydrogen bonds. Then, temperature is 
lowered to let primers anneal to the template, and finally the temperature is set around 720C which 
is optimum for the heat stable polymerase that extends the new DNA copies by incorporating the 
dNTPs [2].      

PCR technology is emerged to specifically amplify a target DNA from an undetectable 
amount of starting materials. In conventional PCR at the end of the amplification, the products 
(also known as amplicons) can be run on a gel for detection. Later, qPCR was developed to 
eliminate the necessity of PCR product gel analysis and for the simultaneous detection of a 
specific target DNA amount in a sample by monitoring the reaction product in real time. 
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Additionally, this technique needs SYBR Green I commonly used dye for non-specific detection. 
This dye intercalates with double-stranded DNA and emits fluorescence which is proportional to 
the amount of amplified product [3]. To detect the RNA expression levels, RT-PCR is commonly 
used to convert the interested RNA into complementary DNA (cDNA) using reverse transcriptase 
enzyme. In this reaction, similar materials including short random, oligo dT or gene specific 
primers will be used for the expression analysis except RNA as template [4].  

Due to the ability of amplifying DNA from even from single copy sequences, PCR has 
owned significant role in biomedical and biological research to manipulate the DNA for cloning, 
sequencing, genetic analysis, functional analysis of genes, pathogen detection, and for forensic 
analysis [5-10]. These wide applications demand the improvement of specificity and efficiency of 
PCR assays by including various additives. There are different key factors such as primer-dimer 
formation and sub-optimal heating/cooling ratio of the thermocycler have the impact on efficiency 
and specificity of PCR [11]. In order to increase efficiency of the PCR, various additives including 
dimethyl sulfoxide, glycerol, dithiothreitol, formamide, betain, and tetramethylammonium 
chloride and its derivatives had been used [12-17].  Similarly, there are studies indicated that 
various nanoscaled systems including carbon nanotubes (CNTs), carbon nanopowder, nanogold, 
magnetic NPs, dendrimers could enhance the specificity and efficiency of polymerization chain 
reactions [18-24]. It was also reported that the thermal efficiency will be enhanced with decreasing 
size of the NPs [25-27]. All of these investigations suggest that the enhanced specificity and 
efficiency of PCR might be due to the effective electrostatic interaction between the NPs and PCR 
components. Abdul et al [28] demonstrated that particles size of∼25 nm TiO2 apart from 
enhancing the amount of PCR product; they also decrease the number of cycles and the time-span 
of the cycles without decreasing the PCR yield. It was also found that TiO2 NPs cause the more 
efficient thermal conductivity through the reaction buffer by augmenting the denaturation of 
genomic DNA. Thus, TiO2 NPs have been proven to be able to improve the specificity or increase 
the efficiency of a polymerase chain reaction (PCR) when a suitable amount of TiO2 was used. 
However, there is still a lack of systematic evaluation of TiO2 NPs’ effect on efficiency and 
fidelity of different PCR assays. Therefore, we aimed to study the effect of smaller sized TiO2 NPs 
(7 nm) on Conventional PCR, RT-PCR and qPCR systems.     

 
2. Materials and methods   
 
2.1 Preparation of TiO2 Aqueous Suspensions and Physical Characterization 
 
TiO2 ST-01 powder [Ishihara Sangyo, Japan (particle size, 7 nm)] having anatase crystal 

structure was exposed to UV light for 30 mins to get rid of the DNase and RNase contamination. 
To prepare the 5 mM nanosupensions, TiO2 NPs were mixed in nuclease free water (Promega, 
Madison) by sonication process with help of ultrasonic equipment for 30 min (40 kHz, 150 W; 
DC150H Ultrasonic Cleaner, Taiwan Delta New Instrument Co.Ltd, ROC). The size and 
morphology of TiO2 NPs were examined by transmission electron microscopy (TEM, Hitachi, H-
7500) operated at 100 kV. The samples were prepared by directly dropping the solution of TiO2 
NPs onto 200-mesh carbon-coated copper grids and dried under vacuum for 12 hr. UV 
spectroscopic analysis was used for further characterisation of TiO2 particles. Finally, we have 
tested different nanomolar concentrations (0.05, 0.1, 0.2, 0.4, 0.8, and 1) of TiO2 NPs in the PCR 
and 0.2 nM was identified as the suitable concentration for enhancing the efficiency of PCR 
assays.              

      
2.2 Cell Culture and RNA Extraction 
 
LNCaP cell lines were cultured in RPMI 1640 containing 10% FBS, and the medium was 

replaced every alternative day. Cell pellet was prepared when cells confluence reached to 70% to 
85%. Total RNA from cell lines were extracted by Trizol (Invitrogen, Carlsbad,CA) using the 
protocol recommended by manufacturer. QIAamp DNA Mini Kit (QIAGEN, Hilden, Germany) 
was used to extract the genomic DNA. Total RNA and genomic DNA were quantified and 
qualified by spectrophotometry (NanoDrop Technology Inc., DE, and USA).  
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carried. Inclusion of TiO2 NPs into qPCR effectively altered the standard expression profiling in 
which fluorescent signal were not identified during PCR quantification. In this data analysis, a 
standard curve of the logarithm of the concentration (Expressed in relative fluorescence units) 
plotted against the Ct value (Figure 6). In order to check the specificity of the primers for the target 
DNA, melting peaks were obtained from the data. Clear melt curves were identified for all 
conditions based on which we demonstrate that inclusions TiO2 NPs are not altering the specificity 
of primers for the target DNA. Previously, 10 nm of gold NPs have been reported to improve the 
yield of end point PCR assay [21]. Another study demonstrated that Gold NPs could interact 
strongly with both single-stranded DNA and double-stranded DNA [32]. However, it was found 
that inclusion gold NPs into SYBR Green I detection systems causing fluorescence quenching 
effect which could potentially result in incorrect quantification of PCR products [33]. Similarly, in 
this study TiO2 NPs were found to enhance the conventional PCR assay however its inclusion into 
qPCR system significantly altered the fluorescence. Surprisingly, we could observe the PCR 
products on 2%agorse gel analysis based on this we suggest that the immeasurable relative 
fluorescent units in the presence of TiO2 nanosuspensions might be due to the fluorescent 
quenching which needs to be further evaluated.      

 
 
4. Conclusion 
 
We have evaluated the effect of TiO2 NPs in qualitative or quantitative amplification 

reactions including PCR, RT-PCR and qPCR. Our results showed that inclusion of TiO2 NPs could 
specifically enhance the yield of conventional PCR. More importantly, addition of 7 nm size of 
TiO2 particles could increase the yield of PCR about three or more fold when compared to 
previous report in which they have used 25 nm TiO2 particles [28]. Therefore, smaller size TiO2 
NPs may be used as efficient additives to enhance PCR system for different biomedical 
applications. In addition, nanosized TiO2 assisted conventional PCR had similar fidelity to that of 
ideal PCR. However, addition of TiO2 NPs has no significant results in RT-PCR and qPCR. Our 
results indicate that there is a scope for improving conventional PCR using TiO2 NPs; however, 
their inclusion into RT-PCR and qPCR assay detection system must be carefully evaluated.      
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