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In this research we studied the influence of sonication time through the properties of 
polysulfone (PS)-graphene oxide (GO) composites. Nanocomposites of PS-GO 0.5 wt. % 
were prepared by phase inversion and were exposed to sonication treatment for 30, 60 and 
90 minutes. The presence of largely dispersed graphene oxide was evidenced by 
Transmission electron microscopy (TEM) and Scanning electron microscopy (SEM) and 
Raman spectroscopy. Fourier transform infrared (FT-IR) investigation indicated no 
occurrence of interaction between graphene oxide nanosheets and PS. The obtained 
composites exhibit similar mechanical and thermal properties with those of PS.  
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1. Introduction 
 
The field of nanoscience has been the centre of attention during the past twenty years, and 

the importance will increase as miniaturisation becomes more important. Progress in this area 
depends fundamentally on the ability to synthesize nanoparticles as well as to assemble them 
efficiently into complex architectures [1]. In this regard, the discovery of graphene and graphene-
polymer nanocomposites is playing a key role in modern nanoscience and nanotechnology [2-3]. 
The inclusion of graphene and its derivatives into polymer and exploring different production 
routes or material properties has been widely considered [4-5]. However, fabrication of graphene-
polymer nanocomposites faces a number of challenges in terms of dispersion and interfacial 
interaction. Several methods were used to incorporate graphene or graphene derivatives within the 
polymer matrix such as melt blending or solution mixing. There have been numerous studies 
revealing that direct mixing of graphene particles and polymer solution is not effective method to 
disperse graphene [3]. Polysulfone (PS) is one of the most important polymeric materials widely 
used in separation or biomedical fields such as artificial organs and medical devices used for blood 
purification. However, from mechanical strength and stability point of view PS proves to be 
vulnerable. Blending the PS with carbon nanotubes (CNTs) has a positive effect but material 
becomes unrealistic expensive [6-7]. Graphene / graphene oxide (GO) is predicted to present 
similar outstanding physical and mechanical properties as CNTs and to be cost effective.  

In this study is presented the synthesis of a new nanocomposite material PS-GO. To 
address the challenge concerning GO dispersion within PS matrix after solution mixing we applied 
different sonication treatment (30, 60 and 90 minutes). Further the influence of exposure to 
sonication on PS-GO composite materials morphology, structure, mechanical and thermal 
properties was investigated.  
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2. Materials and methods 
 
2.1 Materials 
Graphene oxide was purchased from National Institute for Research and Development in 

Microtechnologies (Romania) and prepared according to Hummers method. Polysulfone, Ultrason 
S3010, was provided by BASF. N,N'-Dimethylformamide (DMF) 99.8 % purity and absolute 
ethanol used as polymer solvent, non-solvent respectively were purchased from Sigma Aldrich.  

 
2.2 Preparation of polysulfone-graphene oxide nanocomposites 
Polysulfone was dissolved in DMF under magnetic stirring, in portions, until the desired 

mass concentration is achieved (15 %). In 50 mL of polymer solution, which contains 7 g of 
polysulfone, 0,035 g of graphene oxide (concentration of 0.5 wt. % related to polymer) were added 
and exposed to sonication (60 Hz) for different times i.e. 30 min, 60 min, respectively 90 min. The 
solution was deposited onto a spectral glass at a standard thickness of 400 µm and the composite 
matrix polymer-graphene oxide was precipitated in ethanol. After synthesis, the PS-GO composite 
films were washed and kept in deionized water. 

 
2.3 Characterization of polysulfone-graphene oxide nanocomposites 
A morphological characterisation of PS-GO composites was carried out by Transmission 

electron microscopy (TEM) and Scanning electron microscopy (SEM). TEM images were 
recorded on a TECNAI F30 G2 S-TWIN equipment provided with 300 kV emission gun. The 
Scanning Electron Microscopy was performed using a FEI instrument and the samples were gold 
plated before analysis [10-11]. The structure of the PS and PS-GO composites was investigated by 
Fourier transform infrared (FT-IR) measurements, preformed on SHIMADZU 8900 equipment. 
The FT-IR spectra were assessed in 600 ÷ 4000 cm-1 range with 4 cm-1 resolution. Raman spectra 
were performed on a DXR Raman Microscope from Thermo Scientific using a 633 nm laser line 
and a number of 10 scans. The laser beam was focused with the 10x objective of the Raman 
microscope. Mechanical tests were performed employing an universal mechanical tester (Instron, 
Model 3382, USA). The relative humidity was 45–50% and a speed of 2 mm/min was considered. 
The size of the sample was 10 cm in length and 1 cm in width. Seven-ten samples were tested for 
each composite film and the average values are reported. Thermogravimetrical analysis (TGA) 
was performed on a Q500 TA Instruments equipment, in nitrogen atmosphere from room 
temperature to 800 °C and a heating rate of 10 °C/min. 

 
3. Results and discussion 
 
3.1 Morphological characterisation of PS and PS-GO composites 
 
TEM image of GO (Fig. 1 a) and GO dispersed within PS matrix (Fig. 1b) by applying 

sonication treatment of 60 minutes are reported. TEM revealed the network of GO (Fig. 1a) to be 
composed of stacks of several sheets of GO. From the microscopic investigation of the composites 
(Fig. 1 b) it can be noticed the ability of processing methods (mixing and sonication) to separate 
the GO flakes to single layers. For PS-GO composites exposed to sonication for 60 and 90 minutes 
GO were highly exfoliated. Conversely, it seems that by exposing the composite to 30 minutes 
sonication treatment GO is well dispersed but the occurrence of few isolated aggregation of the 
nanofiller was observed.    
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Fig 3. FT-IR spectra of the A) GO, B) PS, C) PS-GO 0.5 wt. %, sonicated 30 minutes, 

 D) PS-GO 0.5 wt. %, sonicated  60 minutes and E) PS-GO 0.5 wt. %, sonicated 90 minutes 

 
 
Fig. 4. Raman spectra of A) PS, B) GO, C) PS-GO 0.5 wt. %, sonicated 30 minutes, D) PS-GO 0.5 wt. %, 

sonicated 60 minutes and E) PS-GO 0.5 wt. %, sonicated 90 minutes 
 

Table 1. Mechanical properties and Td3% (temperature at which the mass loss is 3%) for PS and PS-GO 
nanocomposites after exposure to different sonication time 

 
Sample Exposure to 

sonication, 
[min] 

Young’s modulus, 
[MPa] 

Tensile 
strength 
[MPa] 

Td3%, 
[°C] 

PS  182.07±14.43 3.54±0.29 497.95 
PS-GO (0.5 wt. %) 30 183.15+18.70 3.86±0.40 503.80 
PS-GO (0.5 wt. %) 60 183.05±24.01 3.60±0.24 509.21 
PS-GO (0.5 wt. %) 90 187.04±17.40 3.18±0.29 503.63 

 
 

3.2 Structural characterisation of PS and PS-GO composites 
The FT-IR analyses were performed to examine the interaction between the PS and GO. 

GO spectrum (Figure 3 A) displays two characteristics bands at 1736 cm-1 and 1618 cm-1 assigned 
to C=O stretching vibration of the carboxylic group and C=C stretching mode of the sp2 network 
[12]. The most important absorption bands present in PS spectrum (Figure 3 B) are: 1150 cm-1 
(SO2 group from polysulfone), 1294 cm-1 (plane stretching symmetric vibration C=C from 
aromatic ring), 834 cm-1 (C-H from aromatic ring), 1488 cm-1 (asymmetric vibration attributed to 
C-H from methyl groups), 1169 cm-1 (stretching vibration of etheric between aromatic rings and 
oxygen) [6-7]. PS-GO composites (Figure 3 C, D and E) exhibit a similar spectrum with the 
pristine PS, with no shifting or occurrence of new bands. This is an indication that no chemical 
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which the mass loss is 3%) values obtained for the pure PS and the PS-GO composites are 
summarized in Table 1. The Td3% increased about 6-11 °C in the case of the composites 
phenomenon which is attributed to the good dispersion of the filler into PS matrix which probably 
slightly suppress the polymer chain mobility. No important influence of the duration of sonication 
treatment was observed on thermal stability of the material.  

 
 
4. Conclusion 
 
In this study, PS and PS-GO nanocomposites materials were obtained and the 

effectiveness of GO as reinforce in PS was discussed.  
TEM images revealed good dispersion of GO within PS matrix particularly for exposure 

of the composites of sonication treatment of 60 and 90 minutes. In the case of exposure to 
sonication treatment of 30 minutes formation of few, small GO aggregates was observed. FT-IR 
investigation suggests no chemical or non-bond interaction between PS and GO thus, the 
disruption of the GO van der Waals interaction and furthermore the GO dispersion is produced by 
sonication treatment. 

The lack of good adhesion between PS and GO matrix generate just a marginal effect on 
the mechanical properties of the composite materials.  

The thermal stability of the PS-GO composites was slightly higher than that of pure PS.  
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