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Using a boundary integral equation method we analyze the extinction spectrum and the 

near-field enhancement induced by surface plasmon resonances with respect to the shape 

modifications of metallic nanospheres. We found that the shape effects are greater on near-

field enhancement than on extinction. The far-field properties are affected by global 

geometric changes like the volume modifications. The near-field, however, is rather 

affected by targeted local shape variations like the curvature variation of nanosphere 

surface.  
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1. Introduction 
 

Since its first practical application, the boundary integral equation (BIE) method has 

gained a lot of attention because it allows convenient calculations of the localized surface plasmon 

resonances (LSPRs) in metallic nanoparticles (NPs) [1]. The near-field properties as well as the 

far-field response depend on the eigenvalues and the eigenfunctions of the BIE operator [2, 3]. As 

a result the BIE method provides a quite clear picture of the LSPR physics and offers an analytical 

tool for the design of plasmonic nanostructures for various applications like sensing [4], imaging 

[5] or medical diagnosis [6].  

In sensing applications there are two properties that are mainly used: (a) the shift of 

LSPRs by the change of the surrounding refractive index; and (b) the near-field enhancement of 

the impinging electromagnetic field around the metallic nanoparticles. Some design aspects of the 

shape changes have been treated in recent papers that calculate perturbatively [7,8] the variations 

of the LSPRs spectral locations with respect to shape changes. However, these papers [7,8] treated 

only the spectral shift of LSPRs but geometrical changes induce also changes in the coupling 

strength of the LSPRs to the electromagnetic field [9]. Thus shape variations change not only the 

positions of the LSPRs but also their strength and new LSPRs may emerge in the spectrum [9].  

The BIE method also permits direct calculation of the near-field enhancement created by 

the LSPRs [3]. The near-field enhancement is potentially used in chemical detection with some 

spectroscopy techniques like surface enhanced Raman spectroscopy (SERS) and surface enhanced 

infrared spectroscopy (SEIRS) [10]. In other words, the LSPR effect enhances the applied electric 

field around the surface of metallic NPs, hence it enhances the Raman and the infrared molecular 

signature [11].  

Advances made in chemical or top-down methods cannot avoid variations in shape or size 

[12]. Metallic nanospheres are ones of the most used plasmon NPs which are fabricated either by 

wet chemistry [10] or by plasma based techniques [13]. On the other hand, even though the 

nanospheres have good crystallinity their shape might deviate from a perfect sphere for instance 

due to the crystalline facets. Shape variations change not only the eigenvalues but also the 

eigenfunctions and their coupling weights to electromagnetic fields. In the present work we will 

analyze the changes of both the far-field spectrum and the near-field enhancement with respect to 
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smooth shape variations from spherical shape. While the near-field and far-field spectrum are 

closely related [3], it will be shown that the near-field enhancement is more affected than the far-

field spectrum by shape changes through local variations of the eigenfunctions responsible for 

plasmonic response of metallic nanospheres. 

 

 

2. Method  
 

In the BIE method it is used the quasi-static approximation, thus for a metallic NP of 

complex permittivity iє , bounded by a surface  , and embedded into a medium of permittivity 

oє , the surface charge density  
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determines the LSPRs of NPs [2,3,14]. In eq. (1)  1 0 1 0  є є є +є , while 
k  is the k

th
 

eigenvalue of M̂  and 
†M̂ , |k kn v   n N  is the inner product defined on  , and ku , and kv  

are the eigenfunctions of M̂  and its adjoint 
†M̂ , respectively. Also n is the normal to   and 

NE 0E0  is the applied field with E
0

, the modulus of 0E , the applied electric field. The 

operator M̂  acting on a certain space of functions defined on Σ  as  
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is not symmetric, but it can be symmetrized with the symmetric and positive operator [3] 
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via the Plemelj’s symmetrization principle † ˆ ˆˆ ˆM S S M , which ensures the relationship between 

the eigenfunctions kv  and ku  by  ˆ
i iv S u . The surface charge density (1) allows us the 

calculation of both the far-field behavior provided by the extinction spectrum and the near-field 

enhancement [2, 3]. For instance, the specific polarizability   (the polarizability of the 

nanoparticle devided by its volume V) can be calculated from (1) as an eigenmode sum by 
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In eq. (4) | |k k kw u v Vx N n N       is the coupling weight to the incident light [2,3]. 

Equation (4) allows an analytic expression for   when the dielectric permittivity of the metallic 

NP is described by the Drude model of the form     2= ,m p i      є . Here m is an 

essentially constant that includes the metallic interband contribution, p  is the plasma frequency, 

  is the dumping constant. The embedding medium is considered as a real and constant dielectric 

permittivity d . The specific polarizability   of the NP takes the following form [2] 
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where  = 1/2pk p k k     is the frequency associated with the localized plasmon resonance 

frequency and    = 1/2 1/2k k d k m       . The quantity   characterizes the far-field 

response of the nanoparticle, such that its imaginary part is proportional to the cross-section 

extinction of the incident light [10] 
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Hence, the eigenmodes whose 
kw  does not vanish are considered bright modes, while those 

eigenmodes with vanishing kw  (or below to a few percent points [9]) are considered dark modes 

that usually cannot be detected in the far-field spectrum.  

 The near-field and in general the field configuration in any point in the outer space of the 

nanoparticle can be found by calculating the field generated by the induced charge 
0Eu . However, 

the near-field next to the NP surface   is directly related to the eigenfunctions of M̂  and †M̂ [3]. 

If the surface   is locally parameterized as  1 2,x X   ,  1 2,y Y   ,  1 2,z Y   , where 

1 2,   are independent parameters and X, Y, and Z, are smooth functions, one can define  the 

tangent vectors, 
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surface. It can be shown that in the three-frame  
1 2
, , t t n  the electric field enhancement along the 

normal is [3] 
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and the field enhancement into the tangent plane has the following expression  
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Equations (7) and (8) provide a modal decomposition of the near-field enhancement and 

an intuitive and a direct relationship between the far-field [Eqs. (4)-(6)] and the near-field 

enhancement [Eqs. (7) and (8)]. Both the far-field and the near-field enhancement can be explicitly 

described by calculating k , ku , and kv . Moreover, the complete plasmonic response can be 

separated in a geometry-dependent part determined by k , ku , and kv  and a material-dependent 

part. In the more precise calculations based on the finite-difference time domain method [15] and 

on the boundary element method in the fully retarded cases [16] one cannot separate, at least 

directly, the geometry-dependent part from the material-dependent part. We note here that our BIE 

is valid in the quasi-static limit which holds as long as the NP size is much smaller than the 

wavelength of the incident light, typically NP size below 10  which is usually the case for 

chemically synthesized nanospheres [10]. 
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3. Plasmonic properties of deformed metallic nanospheres 
 

3.1 Numerical procedure 

In order to calculate plasmonic properties of metallic nanoparticles we have used a 

numerical method that was presented in [14, 3]. The method is a spectral method with an 

exponential convergence [17]. Moreover, the method resembles the efficient fast multipole method 

of Rokhlin and Greengard [18,19]] since the use of a spherical harmonics related basis generates 

sparse and almost diagonal matrices of M̂  and Ŝ . Throughout this work we consider small 

variations from spherical shape of gold NPs immersed in water. The surface Σ  is parameterized by 

{x = g(z)cos , y = g(z)sin ,z}  , where z and the angle   are the variables that determine the 

surface and g(z)  is a smooth but otherwise arbitrary function, which has the following form:  
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The parameters a  and maxz  determine the shape of an individual particle. We note here 

that the quasi-static theory is scale invariant, thus for our convenience we considered maxz =2. The 

spherical shape is given by 0a  . These shape changes however keep the aspect ratio unchanged. 

Without the factor maxz  Eq. (4 ) can cover a much larger class of shapes including spheroids, 

nanodisks, or nanorods. The dielectric permittivity of gold is described by the Drude model with 

its parameters compiled from the literature. In the following sections we will analyze the LSPRs 

and the near-field enhancement of NPs that deviate smoothly from spherical shape. Specifically, 

we will study the shape determined by a = 0.1 that determines a volume variation of -13. % and a 

=-0.03 with a volume variation of 5%.  

 
Fig. 1. The LSPR spectra of a simple and of a slightly deformed nanosphere (a=0.1). The 

solid line denotes the nanosphere and the dashed/dotted curve represents the deformed 

nanosphere in a field parallel/perpendicular to the Oz-axis. The inset shows the cross-

sections  of  these  two  NPs.  The  spectra  are  shifted  upward  for  a better visualization. 

 

 

3.2 Deformed versus simple nanospheres. Plasmonic properties  

In Fig. 1 there are presented the far-field spectral properties of a simple and of a deformed 

nanosphere with a volume variation of -13.% (a=0.1). The main LSPR is given by the dipole 

eigenmode in both cases. In the field parallel to the Oz-axis the deformed sphere shows, however, 

an additional LSPR, which is an octopole-like resonance. The new LSPR looks like a “hump” 

which is indicated by the arrow. On the other hand, in transverse field polarization (perpendicular 

to the Oz-axis) the spectra remain practically unchanged. The most representative eigenvalues and 

the weights kw  and kn  are given in Table 1. From Eq. (4) one can deduce that larger eigenvalues 
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k  means longer LSPR wavelengths, thus the dipole eigenvalue of the deformed nanosphere is 

slightly red-shifted with respect to the nanosphere.  

 
Table 1. The most representative eigenmodes and their weights for a deformed 

nanosphere (a=0.1). The corresponding values for sphere are in parenthesis.  The  field is  

                                                      parallel to the symmetry axis. 

 

k 
k  

kw  
kn  

1 0.5 (0.5) 0(0) 0(0) 

2 0.1692(0.16667) 0.775(1) 2.7246(3.342) 

3 0.143466 (0.1) 0(0) 1.5048 (0) 

4 0.08147(0.07143) 0.18679(0) 0.6777(0) 

 
Fig. 2. The near-field enhancement factors around a simple and around a slightly 

deformed nanosphere (a=0.1) at their resonance frequencies for the field parallel to the 

Oz-axis. The dipole mode enhancement of the perfect/deformed sphere is plotted with 

solid/dashed line. The near-field enhancement of the octopole mode of the deformed NP is  

                                                    depicted by a dashed line. 

 

 

In contrast to the far-field, the shape variation has a bigger effect on the near-field 

enhancement. Fig. 2 shows the near-field enhancement around these two types of NPs at resonance 

frequency. The electric field polarization is parallel to the symmetry axis; therefore the near-field 

enhancement is also axially symmetric. The simple as well as the deformed nanosphere has the 

largest near-field enhancement created by the dipole eigenmode. One can see a much larger 

enhancement for the deformed NP with a maximum enhancement of 45. The nanosphere 

enhancement is just 19. In addition, the octopole enhancement of the deformed NP is comparable 

with the enhancement of the nanosphere.  

In general, the field enhancement is determined by k , the coupling factors kn  and the 

charge densities associated with each eigenmode. From Table 1 one can see a smaller value of kn  

for the dipole mode therefore “spots” with larger field-enhancement implies “spots” with larger 

charge density. An additional contribution comes from the eigenmode 3 0.143466    which is 

completely dark in the far-field ( 3 0w  ) but has a consistent contribution in the near-field 

( 1.5048 kn  ). The charge density of the dipole mode has its maximum along z-axis at the 

north/south pole. On the other hand, the deformed NP has a larger curvature in the regions with 

large field enhancement. This example suggests a modality to increase the near-field enhancement 

by modifying the curvature of the NP in the regions where the charge density of the eigenmode is 

maximal. Also it shows that BIE can easily identify concurring bright and dark eigenmodes for 

larger near-field enhancement in contrast to more rigorous and more complex method of [15] and 

[16].  
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Fig. 3. The LSPR spectra of a simple and of a slightly deformed nanosphere (a=-0.03). 

The solid line denotes the nanosphere and the dashed/dotted curve represents the 

deformed nanosphere in parallel/perpendicular polarization field. The inset shows the 

cross-sections of these two NPs. The spectra are shifted upward for a better  visualization. 

 

 

 The second case is a slightly larger and deformed nanosphere with a=-0.03 and a volume 

variation of 5% bigger than of a corresponding simple nanosphere. In Fig. 3 there is shown the 

spectral dependence of the far-field, where no significant modification occurred by shape change. 

The corresponding eigenvalues and their weights are presented in Table 2. Like in the previous 

case the dipole LSPR of the deformed nanosphere is also red-shifted. In addition, there is at least 

one other eigenmode (an octopole-like) that has its weight different from zero, but the weight is 

not big enough to be noticeable in the spectrum [9]. Like in the previous case of deformed but 

smaller nanosphere the third eigenmode is dark in the far-field but has a non-vanishing 

contribution for the evanescent near-field. 

 
Table 2: The most representative eigenmodes and their weights for a deformed 

nanosphere (a=-0.03). The corresponding values for sphere are in parenthesis. The field  

is parallel to the symmetry axis. 

 

k 
k  

kw  
kn  

1 0.5 (0.5) 0(0) 0(0) 

2 0.1728 (0.16667) 0.98173(1) 3.363 (3.342) 

3 0.08629(0.1) 0(0) 0.5267(0) 

4 0.0645 (0.07143) 0.01809(0) 0.053(0) 

 

 

Fig. 4 shows the near-field enhancement around these two types of NPs at the resonance 

frequencies. The electric field polarization is also parallel to the symmetry axis; therefore the near-

field enhancement is symmetric about z-axis. The dipole eigenmode still induces the largest near-

field enhancement in the deformed nanosphere but its value is smaller than the near-field created 

by a simple nanosphere. The near-field maximum is no longer along the z-axis as was the case of 

the smaller deformed nanosphere presented above. 
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Fig 4. The near-field enhancement factors around a simple and around a slightly 

deformed nanosphere (a=-0.03) at their resonance frequencies for the field parallel to the 

Oz-axis. The dipole mode enhancement of the perfect/deformed sphere is plotted with 

solid/dashed line. The near-field enhancement of the octopole mode of the deformed NP is  

depicted by a dashed line. 

 

Due to its bigger volume the deformed NP can surround the nanosphere, therefore its 

curvature is smaller than the curvature of a sphere along x-, y-, and z-axis. Thus the maximum of 

the dipole charge density is not along those axes, but along a direction where the curvature is 

smaller. Still, as suggested by the first example, the near-field enhancement of the deformed NP 

can be improved by further modifications of the curvature in the region where the near-field 

reaches its maximum.  

 

 

4. Conclusions 
 

The effect of shape variation on LSPR can be suitably studied with the BIE method. The 

BIE method allows continuous monitoring of the key aspects (eigenvalues, eigenfunctions, 

weights, etc.) of the LSPR with respect to the NP geometry. Slightly modifications of spherical 

shape show that the near-field enhancement is more affected by shape changes than the far-field 

spectrum. The near-field changes are determined by local curvature variations in the regions with 

large field enhancement. In contrast, the far-field is influenced by global geometry changes like 

the volume variations of more than 10%. The present calculations may explain why the 

nanospheres have shown significant results in SERS studies where a near-field enhancement of 

hundreds of times is needed [10]. Finally, this study provides some guidelines of designing 

plasmonic structures for sensing applications, where factors like the near-field enhancement and 

the extinction spectrum are needed to be easily determined and interpreted.  
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