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The k-connectivity index ¥y(G) of a molecular graph G is the sum of the weights
(dvldvz---dvk+1)'1’2, where viV,-vi.runs over all paths of length k in G and d,; denotes the
degree of vertex vi. In this paper, we give the explicitly formula of the k-connectivity
index of a finite class of dendrimer s, which generalized Ahmadiand Sadeghimehr’s
result [Second-order connectivity index of an irfinite class of dendrimer nanostars, Dig. J.
Nanomater Bios., 2009].
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1 Introduction

A dendrimer is generally described as a macromolecule, which is characterized by its
highly branched 3D structure that provides a high degree of surface functionality and versatility. It
is constructed through a set of repeating chemical synthesis procedures that build up from the
molecular level to the nanoscale region under the condition that is easily performed in a standard
organic chemistry laboratory.

Dendrimers have often been referred to as the”Polymers of the 21st century”. Dendrimer
chemistry was first introduced in 1978 by Buhleier, Wehner, and Vogtle [3], and in 1985, Tomalia
et al [14] synthesized the first family of dendrimers. In 1990, a convergent synthetic approach was
introduced by Hawker and Frechet [4]. Dendrimer popularity then greatly increased, resulting in a
large number of scientific papers and patents.

Let G be a simple connected graph of order n. In 1975, Randic [10] introduced the
connectivity index (now called also Randic index) a§Z(G)=%‘,ﬁ ,Where uv runs over all
edges of G. This index has been successfully related to chemical properties, namely if G is the
molecular graph of an alkane, then "y(G) has a strong correlation with the boiling point and the
stability of the compound [8, 9, 12].

The k-connectivity index of an organic molecule whose molecule graph is G is defined
As

1

lZ(G) = Z (dvldv2 "'dvl<+1)7E

ViVa - Vicn

where v,V runs over all paths of length k in G and d,; denotes the degree of vertex v;.
The higher connectivity indices are of great interest in molecular graph theory, one can refer [6]
and [13] for more details, and some of their mathematical properties have been reported in [2, 5, 7,
11].

In [1], Ahmadi and Sadeghimehr determined the 2-connectivity index of an irffinite class
of dendrimer nanostars. In this paper, we give the exact value of the k-connectivity index of such
dendrimers for a nonnegative integer k, which generalize Ahmadi and Sadeghimehr’s result.
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2. Main results

Let D[n] denote a type of dendrimer with n growth stages, D[2], D[3] and D[5] are shown
in Fig.1. The dendrimer D[n] can be constructed recursively: set D[1] := K;, the star with four
leaves (vertices of degree one), and D[n + 1] is obtained from D[n] by adding two new
independent vertices adjacent to each of the leaves of D[n]. The unique vertex of degree four in
D[n] is called the center of D[n].

D[2] D[3]) D[3)
Fig. 1

For a given positive integer k, let P™}; ;, ..is1 denote the number of paths composed by k+1
consecutive vertices of degree iy, iy, ixs1, respectively in D[n]. Since D[n] is undirected, P®;
i -iker = Piertik i -

We compute Pjy,...ik+1 according to the choices of igipigs1.

I byl =13-- Gleh paths exist if and only if k is even and 2 < k < 2n—2.
k-1

Such a path must start from a leaf, then k/2 steps toward to the center and k/2 steps away from the
center. There are 4 - 2r1 ways to choose an end of such a path (as there are 4 - 2n-1 leaves).
Then the following k/2 consecutive vertices are uniquely determined (toward the center). Since the
next step must toward the reverse direction, this vertex again is determined uniquely. For each of
the remaining k-1 vertices, there are two choices, so there are totally 2 ways to choose them.
By the symmetry, each path is calculated twice. Hence
k k
P(n)13~~31 =4.2"1.22 1.12 22 1,2S k<2n-2
1. o . Such paths exist if and%nly ifk=n.
by -y :lw4
Such a path is uniquely‘determined by the end of degree one. So
iy =

(n) _ .on-1 _ on+l _
. P sueh paths xist Tt and oIy iz k <sn 1. a4
—

By the recursion of D[n], such a path can be seen as a path in D[K] of type 13-"351. Hence, by 11,

PM_, o, =P®, ,,=2""1<k<n-1
V. i, iy —13...343.. K1+ Ko = k=2). Such paths exist if and only if k; = k; = n—1 and k
Such a path is composled by fwo symmetric segments of length k, = n, each segment can be
considered as a path from the center to a vertex of degree one. There are 4
choices for thefirst vertex adjacent to the center of the two segments. For each of the rengéilwing
k—2 vertices in the two segments, there are two choices to take them. Hence

" 4
P! )13~~-4-~31 = [

j-ZkZ =3.2" k=2n
2
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V. iy, =13:--343---3 (k2> 1, k1 + k2 = k—1). Such paths exist if and only if ki = n—1, k2 =
Ky Ky

k—-n, n+1 <k <2n-1.

Such a path is composed by two segments of length ki + 1 and kz, respectively, each of which

starts from the center. The difference between the case from case 1V is that the two segments are

not symmetric. So, by a similar reason as in 1V,

PM ., ,=4-3.22=3.2 n+1<k <2n-1

iyl = 13_,_,343_,_,3
VI. by ko
(VI.l) kisevenand 1<k <n-—1.
Such a path must start from a vertex of degree one to a vertex of degree three with k/2+1 steps toward to the
center, then k/2—1 steps toward or away from the center. There are 4-2"" choices for the vertex of degree one,
and the first k/2+2 vertices are uniquely determined once the starting vertex of degree one has been chosen. For

each of the remaining k/2—1 vertices, there are two choices. So

k
—+n

Ky
(V1.2) kis even and R € ko on=44 - 2" -22 =22
Such a path must start from a vertex of degree one to a vertex of degree three with i steps with
k/2+1 <1< n—1 toward the center, then k—i steps away from the center. There are 4-2n—1 ways to
choose the vertex of degree one, and the first i+2 vertices (including the first vertex chosen for the
reverse direction) are uniquely determined once the starting vertex of degree one has been chosen.
For each of the remaining k—i—1 vertices, there are two choices. So,

n—1 ) k.
P(n)l3_“33 — 4. 2n71 . Z 2kflfl — 22

i=k/2+1

n . 2k+1

With a similar discussion as in (VI.1) and (V1.2), respectively, we have the following two
formulas when Kk is odd.
(VI.3)kisoddand 1 <k<n-1

k-1 k+1

PM, =4-2"".22 =22
(VI.4) kisoddandn<k<2n-3

+n

n-1 . EJrn
P(n)13u.33 — 4 . 2n71 ) Z 2kflfl — 2 2 _ 2k+l
VI i=(k+1)/2

iy, i, =33
k+1
(VI1.1) k is even. Such a path exists if and only if k<2n—4, that is n>k+4

If k = 2n—4, i.e. n = (k+4)/2, by the recursion of D[n], such a path corresponds to a path of type
13---31 of length k in D[n—1]. Hence, by I

© 3 ¢ T o
P =P 3333 = P 1331 =2 =2",(k=2n-4)

If k <2n—4, 1. e. n > (k+4)/2 , by the recursion of D[n], a 3:-:3 path in D[n] is either a 3---3 path in
D[n—1], or a 13---31 path in D[n—1], or a 13---3 path in D[n—1]. So,

PO =P o+ P o, +P® (1)

13---31 13---33

Using (1) recursively, and by I and VI, we have
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pm — p(%‘l) ST (p® p®
33..-33 7 33---33 + ( 13---31 + 13~--33)
ezl
C2
n-1 5+i—1
2+ 3 (38-227 =21 k>n

k 5-¢—i—l n-1 5+i—l
2+ > (322 -2+ > 3.22 k=<n-1

k+4 i=k+1

3-2"2 " _(2n+1-k)-2*,. n<k<2n-4

k
n+—

3.2"7" _(3+k)- 2", k<n-1

(VI11.2) k is odd. Such paths exist if and only if k <2n-5, that is n > (k+5)/2 .
If k =2n—5 and k > 3, such a path can be considered as a path of type 13---3 of length k in D[n—1].
So, by (VI.4),

(G (=D —
(n) — 2 — 2 — 2
P 3.3 P 3.3 — P 133 — 2

k+5 k+5 k+1 k+5
k+1 k+1
2 2 — 2

If3<k<2n-5i.e. n>(k+5)/2 + 1> 5, such a path corresponds to either a path of type 3---3 in
D[n—1] or a path of type 13--3 in D[n—1]. So

(n) _ p(h-1) (n-1)
P 3.3 — P 3...3 +P 13...3 (2)

Applying (2) recursively and by VI,

" 2 L
P )3--~3 =P 255+ P )13~-3
k+5
I=7n—1 k+1
2kt (22 -2 n<k<2n-5
K+
B Kk EH n-1 EH
2K+ > (22 -2+ > 22 3<k<n-1
. k+5 i=k+
i=Ks K+1
n+ﬂ
2 2 —(2n+1-k)-2,n<k<2n-5

k+1

22 _(3+k)-2¢,3<k=<n-1

If k=1and n = 3, such a path can be considered as a path of type 13 in D[2]. By (V1.3),
Applying (2) recursively and again by VI,

p@,, =23

n-1
m _p® O]
P 33—P 33+ZP 13
i=3
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2" —-8,n>3
B.p7L2. 4 o0

Therefore, we have

k+1
2 2 —(2n+1-k)-2,n<k<2n-5

k+1
n

2""2 _(3+k)-2¢,1<k=<n-1

(n) —
P 3..3 —

[T —3 -343---3
VIII. k1 Wherek1+k2—k ki>1,k,>1
By the symmetry of k; and kz, we may assume k; > k.
(VII.1) kis even

If k; = k, = k/2, such a path can be seen as a path of type 13-:-343---31 in D[k/2].

By 1V, N
3...343...3 |:>(k/2)13 -343---3 T 3 2k '
If k; >k, that is k; > k/2 +1, such a path can be seen as a path of type 13:--343---3 in D[k,]. By V,

(n) _ pk) _ k
If k <n, then P 3..-343---3 — P 13-.-343...3 — 3-2

k-1
P(n)3-~-343--~3 = P(k/2)13--»343»k—31 + z P<kl)13»--343--»3
=324 > Bphkn
ky=k/2+1
=3(k —12*
If n+1 <k <2n-2, then

n-1

n) _ pk/2) (k;)
P 3...343..-3 — P . 13-~343+123:5 + z)q P 13---343---3
=3-2"+ Juplen

ky=k/2+1

=3(2n—k —1)2%*

(VI.2) kis odd
Similarly as in (V111.1) (the only difference is k; # k; in this case), we have
k-1 k-1
P(n)s...343-~3 Z I30(1)13-~343~-3 = Z 3-2%
Ky =(k+1)/2 1 Ky =(k+1)/2
and =3(k-1)2
n—1 K n—1 K
P(n)3-4-343~~3 = Z P l)13-~343A-<3 = Z 3-2"
k= (k+1)/2 Ky =(k+1)/2

Based on the above computations, We(can get thé }ormula of the k-connected index of D[n] for any

nonnegative integer k.

Theorem 2.1 Given a positive integer n, the k-connected index of D[n] for any nonnegative

integer k are listed in Table 1.

Proof If k = 0, let ni denote the number of vertices of degree i in D[n], then n, = 2™, ny = 22
.+ 2"=2"— 4 and n, = 1 from the definition of D[ ]. Hence

2n+1 2n+l 4 1

°2(DIn]) = VNN

If 1<k <n —1and Kk is even, then the possible types of all paths of length k in D[n] are 13:--31,
3.-34,13.--3,3--3and 3:-343---3. By I, I11, (V1.1), (VII.1) and (VII1.1),

_3 2(2n+1 4)+2n+l+2 -1
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k+n—1

K
— —+n-1
P(n)ls a1 =22 , P(n)33~-434 = 2", P(n)33~-33 =3-22 -@B+k)- 2", P(n)13~-33 =22

k

—+n

and P™, , .=3(Kk-1)-2“", respectively So,

‘20 =2"7" ——

1 2k+l 1
[ kl \/_ [4.3k
B2 3k 2t a1y 2L

= N

V341 (3V3-4)k+(3-12)

2k72

If 1 <k<n-1 and k is odd, then the possible types of all paths of length k in D[n] are
3.-34,13--3, 3-~3 and 3--343--3 By 111, (V1.3), (VI1.2) and (VII1.2), P™ ., =2,

k+1

respectively. So,

“2(DIn]) =

k+1

P(n)lamss = ZTM, P(n)ss..ss =22 —(3+k)-2* and P(n) ...... =3(k-1)- 2kt
k+1
2k+l;+ 2 S 1 i
V4.3 J3
n-¢—E l 1

3 3+1, e (3[ Mk +(+/3-12)
\/3k7 J3et

2 _(3+k)-2"] +3(k —1)- 2

NI

2k—2

/ k+1

The other formulas can be verified similarly.

Table 1: formula of k-connected index of D[n]

K “7(D[n)
K=0 \/§+12n+l+\/§_8
J3 243
N V3+1 05 (BV3-4)k+(3-12) .,
0 \/3“T \/3kT
1<k<n-1
e V3411 (3V3-4)k+(v3-12)
\/37 [3k+l
N V3+1,% (3V3-4k+(B-113)
k_n 0 [3k+1 /3k+l
oven \/§+122k+(3\/§—4) + ( —11\/5)21«2

n+1<k<2n-4

I+1 nd (ef 8)n—(4—3v3)k + (14-11/3)

odd \/3m N

2k—2
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k _ (4 — _
oven J3+1 3, (6+/3-8)n—(4—-33)k +(14-113) ot
\/37 [3k+l
k=2n-3 3347 s
J3
k=2n—2 33410,
3k—l
1
k=2n-1 ?2
1
k=2n = 2
k> 2n 0
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