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THE K-CONNECTIVITY INDEX OF AN INfiNITE CLASS OFDENDRIMER 
NANOSTARS 

 
 

WEIQING WANG, XINMIN HOU*

Let G be a simple connected graph of order n. In 1975, Randic [10] introduced the 
connectivity index (now called also Randic index) as              ,where uv runs over all 
edges of G. This index has been successfully related to chemical properties, namely if G is the 
molecular graph of an alkane, then 

1χ(G) has a strong correlation with the boiling point and the 
stability of the compound [8, 9, 12]. 

The k-connectivity index of an organic molecule whose molecule graph is G is defined 
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The k-connectivity index kχ(G) of a molecular graph G is the sum of the weights 
(dv1dv2···dvk+1)-1/2, where v1v2···vk+1runs over all paths of length k in G and dvi denotes the 
degree of vertex vi. In this paper, we give the explicitly formula of the k-connectivity 
index of a infinite class of dendrimer s, which generalized Ahmadiand Sadeghimehr’s 
result [Second-order connectivity index of an infinite class of  dendrimer nanostars, Dig. J. 
Nanomater Bios., 2009]. 
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1 Introduction 
 
A dendrimer is generally described as a macromolecule, which is characterized by its 

highly branched 3D structure that provides a high degree of surface functionality and versatility. It 
is constructed through a set of repeating chemical synthesis procedures that build up from the 
molecular level to the nanoscale region under the condition that is easily performed in a standard 
organic chemistry laboratory.  

Dendrimers have often been referred to as the”Polymers of the 21st century”. Dendrimer 
chemistry was first introduced in 1978 by Buhleier, Wehner, and Vogtle [3], and in  1985, Tomalia 
et al [14] synthesized the first family of dendrimers. In 1990, a convergent  synthetic approach was 
introduced by Hawker and Frechet [4]. Dendrimer popularity then greatly increased, resulting in a 
large number of scientific papers and patents. 

As 
 
 
 
where v1v2···vk+1 runs over all paths of length k in G and dvi denotes the degree of vertex vi. 
The higher connectivity indices are of great interest in molecular graph theory, one can refer [6] 
and [13] for more details, and some of their mathematical properties have been reported in [2, 5, 7, 
11]. 

In [1], Ahmadi and Sadeghimehr determined the 2-connectivity index of an infinite  class 
of dendrimer nanostars. In this paper, we give the exact value of the k-connectivity index of such 
dendrimers for a nonnegative integer k, which generalize Ahmadi and Sadeghimehr’s result. 
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2. Main results 
 
Let D[n] denote a type of dendrimer with n growth stages, D[2], D[3] and D[5] are shown 

in Fig.1. The dendrimer D[n] can be constructed recursively: set D[1] := K1,4 the star with four 
leaves (vertices of degree one), and D[n + 1] is obtained from D[n] by adding two new 
independent vertices adjacent to each of the leaves of D[n]. The unique vertex of degree four in 
D[n] is called the center of D[n]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For a given positive integer k, let P(n)

i1 i2 ···ik+1 denote the number of paths composed by k+1 
consecutive vertices of degree i1, i2,···, ik+1, respectively in D[n]. Since D[n] is undirected, P(n)

i1 

i2 ···ik+1 = P(n)
ik+1ik ···i1 . 

We compute Pi1i2···ik+1 according to the choices of i1i2···ik+1. 
 
I.                 .Such paths exist if and only if k is even and 2 ≤ k ≤ 2n−2. 
 
Such a path must start from a leaf, then k/2 steps toward to the center and k/2 steps away from the 
center. There are 4 · 2n−1 ways to choose an end of such a path (as there  are 4 · 2n−1 leaves).  
Then the following k/2 consecutive vertices are uniquely determined (toward the center). Since the 
next step must toward the reverse direction, this vertex again is determined uniquely. For each of 
the remaining k−1 vertices, there are two  choices, so there are totally 2k/2−1 ways to choose them. 
By the symmetry, each path is calculated twice. Hence 
 
 
II.                  . Such paths exist if and only if k = n. 
 
Such a path is uniquely determined by the end of degree one. So 
 
III.                 .Such paths exist if and only if 1 ≤ k ≤ n − 1. 
 
By the recursion of D[n], such a path can be seen as a path in D[k] of type 13···34. Hence, by II, 
 
 
IV.                       (k1 + k2 = k−2). Such paths exist if and only if k1 = k2 = n−1 and k 
= 2n. 
Such a path is composed by two symmetric segments of length k2 = n, each segment can be 
considered as a path from the center to a vertex of degree one. There are  
choices for the first vertex adjacent to the center of the two segments. For each of the  remaining 
k−2 vertices in the two segments, there are two choices to take them. Hence 
 
 

Fig. 1 
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V.  
1 2

1 2 1 13 343 3k
k k

i i i + =    (k2 ≥ 1, k1 + k2 = k−1). Such paths exist if and only if k1 = n−1, k2 = 

k−n, n+1 ≤ k ≤ 2n−1. 
Such a path is composed by two segments of length k1 + 1 and k2, respectively, each of which 
starts from the center. The difference between the case from case IV is that the two segments are 
not symmetric. So, by a similar reason as in IV, 
 
 
 
 
VI.  
(VI.1) k is even and 1 ≤ k ≤ n−1. 
Such a path must start from a vertex of degree one to a vertex of degree three with k/2+1 steps toward to the 
center, then k/2−1 steps toward or away from the center. There are 4·2n−1 choices for the vertex of degree one, 
and the first k/2+2 vertices are uniquely determined once the starting vertex of degree one has been chosen. For 
each of the remaining k/2−1 vertices, there are two choices. So 
 
(VI.2) k is even and n ≤ k ≤ 2n−4. 
Such a path must start from a vertex of degree one to a vertex of degree three with i steps with 
k/2+1 ≤ i ≤ n−1 toward the center, then k−i steps away from the center. There are 4·2n−1 ways to 
choose the vertex of degree one, and the first i+2 vertices (including the first vertex chosen for the 
reverse direction) are uniquely determined once the starting vertex of degree one has been chosen. 
For each of the remaining k−i−1 vertices, there are two choices. So, 
 
 
 
 
With a similar discussion as in (VI.1) and (VI.2), respectively, we have the following two 
formulas when k is odd. 
(VI.3) k is odd and 1 ≤ k ≤ n − 1 
 
 
(VI.4) k is odd and n ≤ k ≤ 2n − 3 
 
 
VII. 
 
(VII.1) k is even. Such a path exists if and only if k≤2n−4, that is n≥k+4 
If k = 2n−4, i.e. n = (k+4)/2, by the recursion of D[n], such a path corresponds to a path of type 
13···31 of length k in D[n−1]. Hence, by I 
 
 
If k < 2n−4, i. e. n > (k+4)/2 , by the recursion of D[n], a 3···3 path in D[n] is either a 3···3 path in 
D[n−1], or a 13···31 path in D[n−1], or a 13···3 path in D[n−1]. So, 
 
 
 
Using (1) recursively, and by I and VI, we have 
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(VII.2) k is odd. Such paths exist if and only if k ≤ 2n−5, that is n ≥ (k+5)/2 . 
If k = 2n−5 and k ≥ 3, such a path can be considered as a path of type 13···3 of length k in D[n−1]. 
So, by (VI.4), 
 
 
 
If 3 ≤ k < 2n − 5 i.e. n ≥ (k+5)/2 + 1 ≥ 5, such a path corresponds to either a path of type 3···3 in 
D[n−1] or a path of type 13···3 in D[n−1]. So 
 
 
Applying (2) recursively and by VI, 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
If k = 1 and n = 3, such a path can be considered as a path of type 13 in D[2]. By (VI.3), 
 
Applying (2) recursively and again by VI, 
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Therefore, we have 
 
 
 
 
 
 
 
VIII.                     , where k1 + k2 = k, k1 ≥ 1, k2 ≥ 1 
By the symmetry of k1 and k2, we may assume k1 ≥ k2. 
(VIII.1) k is even 
If k1 = k2 = k/2 , such a path can be seen as a path of type 13···343···31 in D[k/2]. 
By IV, 
 
If k1 > k2, that is k1 ≥ k/2 +1, such a path can be seen as a path of type 13···343···3 in D[k1]. By V, 
 
 
If k ≤ n, then 
 
 
 
 
 
If n+1 ≤ k ≤ 2n−2, then 
 
 
 
 
 
(VIII.2) k is odd 
Similarly as in (VIII.1) (the only difference is k1 ≠ k2 in this case), we have 
 
 
 
and 
 
 
 
Based on the above computations, we can get the formula of the k-connected index of D[n] for any 
nonnegative integer k. 
Theorem 2.1 Given a positive integer n, the k-connected index of D[n] for any nonnegative 
integer k are listed in Table 1. 
Proof: If k = 0, let ni denote the number of vertices of degree i in D[n], then n1 = 2n+1, n3 = 22 
+ ··· + 2n = 2n+1 − 4, and n4 = 1 from the definition of D[n]. Hence 
 
 
 
 
If 1 ≤ k ≤ n − 1 and k is even, then the possible types of all paths of length k in D[n] are 13···31, 
3···34, 13···3, 3···3 and 3···343···3. By I, III, (VI.1), (VII.1) and (VIII.1),  
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If 1 ≤ k ≤ n − 1 and k is odd, then the possible types of all paths of length k in D[n] are 
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The other formulas can be verified similarly. 
 
 

Table 1: formula of k-connected index of D[n] 
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