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The present study aims to provide additional insight into the bioelectrochemical processes 
that drive biohydrogen production by microorganisms living in aqueous ecosystems. To 
this end, we have obtained water samples from three locations in Romania (the Black Sea, 
Lake Siutghiol and the River Sabar), and employed them in the cathodic chamber of a 
Microbial Electrolysis Cell (MEC) run at a negative polarization of 1,100mV vs. Ag|AgCl. 
The microbial species present in the water samples employed in the MEC proved capable 
of driving biohydrogen production through electrolysis without the need of mediators, 
reaching a maximum efficiency of 57% in biohydrogen production using the marine 
waters sample. Microbial activity also led to the reduction of nitrates present in the 
wastewater substrate; this may spell promising developments in wastewater treatment 
coupled with biohydrogen production.  
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1. Introduction 

Hydrogen serves as an excellent energy carrier in sustainable economic models based 
exclusively on renewable and alternative energy sources [1, 2], collectively branded as “Hydrogen 
Economy”, with hydrogen-powered Fuel Cells (FCs) set at the technological foundation of the 
whole endeavor [3, 4]. Hydrogen production relies on: thermochemical processes (i.e. steam 
reforming) [5, 6], electrochemical processes (i.e. water electrolysis and photo-electrochemical 
water splitting) [7], or biological processes (i.e. biohydrogen generation) [8]. In the last decade, 
biohydrogen research has focused on: wastewater photolysis using green algae, anaerobic 
digestion of organic substrates by dark fermentation during the acidogenic phase, water-gas shift 
using photo-fermentation [7], bacterial fermentation of carbohydrates (e.g. glucose) [9], and 
bioelectrohydrogenesis [10]. The latter consists of an electrolytic process that transforms 
biodegradable organic substrates into biohydrogen by employing modified Microbial Fuel Cells 
(MFCs), thus termed Microbial Electrolysis Cells (MECs).  

The first MEC model (MEC1) is built around an MFC architecture employing negative 
polarization at the anoxic cathode; protons generated during the microbial catabolic phase become 
reduced at the cathode under low potential supplied by an external electromotive force [11-17]. 
MEC1 has the distinct advantage over fermentation methods of reaching a higher biohydrogen 
yield, and over traditional water electrolysis of running at greater energy efficiencies, as the 
applied negative polarization is lower than the potentials required by electrolysis [18-21]. The 
second model (MEC2) applies negative polarization on microbial biofilms formed around the 
electrode in the anodic chamber; protons become reduced directly by the microorganisms.  
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A key issue in biofilm development - and thus exoelectron transfer - is the bioaffinity 
between the electrode material and the microorganisms (a biofilm-encrusted anode/cathode is 
commonly referred to as a bioanode/biocathode). Oxidation of the organic substratum releases 
protons, which migrate through the proton-exchange membrane into the cathode chamber, where 
they recombine with atmospheric oxygen to form water. The equivalent circuit consists of an EMF 
gradient (EMFC) providing an open-circuit voltage (VOC) over the internal resistance (Ri) of the total 
circuit elements. Microbes consume a fraction of the electrons produced by substrate oxidation (Fs) 
to provide energy required for cell growth; surplus electrons are transferred to the outer cell 
membrane (Fe-cell), where they are used for energy production (Fx) – excess electrons are expelled 
to the anode as exoelectrons (Fexo). The overall equilibrium holds as: 

Fୱ ൐ Fୣିୡୣ୪୪ ൌ F୶ ൅ Fୣ୶୭     (1) 

The chemical composition of the organic fraction in wastewater varies according to its 
origin. As a rule of thumb, often evoked in wastewater treatment, the organic fraction can be 
represented by a generic compound (C18H19O9N) with a mean molar mass of ~393g [26, 27]. 
When oxidized by microbes (without nitrification), the end products are carbon dioxide, water and 
ammonia according to the formula: 

+ +
18 19 9 2 2 2 4C H O N+17.5O +H 18CO +8H O+NH    (2) 

The above reaction yields a BOD value of ~1.42kg O2/kg of organic matter. To estimate 
the energy yield of a typical MFC, we need to account for the Gibbs free energy (ΔG0, in joules 
per electron equivalent, under standard biological conditions of: p=1atm, T=250C, pH=7) in the 
following half-reactions [26, 27]: 

18 19 9 2 2 3 4

1 28 17 1 1
C H O N H O CO HCO NH H e

70 70 70 70 70
          (3) 

∆Gୟ୯଴ ൌ ൅32݆݇/݁݁ݍ, E଴ୟ ൎ െ0.33ܸ    (4) 

, where the oxidation potential E0 is calculated according to E଴ ൌ െ∆G଴ F⁄  (F stands for 
Faraday’s constant). The reactions in the cathode chamber yield: 

0

0

ΔG =-237.34 kJ/mole
2 2 2

ΔG =-118.67 kJ/eeq+ -
2 2 0c

1
O +H H O(l)

2
1  1

O +H +e H O;  E =1.23V
4 2

 


   (5) 

Correcting for neutral pH: 

 
 

1/2

2'
0c 0c 1

+
2

4

H ORT
E =E - ln 0.804V

nF pO H


  

   (6) 

, with the reduction potential being calculated for an air-bubbling chamber at 1atm with an oxygen 
partial pressure [pO2]=0.2atm and [H+]=10-7M.  
 

The electromotive force per electron equivalent is: 

' '
MFC 0c 0aE E E 0.804 ( 0.33) 1.134V       (1) 
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Proton-exchange membrane: Nafion 117, DuPont. PEM was activated by boiling in H2O2 (3% v/v) 
for 2h, then in H2SO4 (0.5M) for 2h and finally in DI water for 2h and stored in DI water before 
use. 

3.2 Experimental setup 

The MEC2 setup used in our experiments consisted of two airtight glass bottles (250ml) 
separated by a 3cm2 (cross-section area) PEM. The anodic chamber contained 150ml of the abiotic 
solution; the cathodic chamber contained 160ml of the biotic solution-water sample mixture, and 
housed the graphite rod electrode and an Ag|AgCl reference electrode at +199mV vs. SHE. Before 
use, each chamber was purged with a gas mixture of N2/CO2 (70/30% v/v) for 30min (10min in the 
liquid phase and 20min in the gas phase) to remove oxygen/hydrogen residues; all solutions were 
adjusted to neutral pH. The system was maintained at 350C in a water bath under stirring to ensure 
that mass transfer would not affect current generation. 

3.3 Analytical techniques 

 The following methods and instrumentation were used throughout our analysis: 
Electrochemical Impedance Spectroscopy & Cyclic Voltammetry: VoltaLab® 40 (PGZ301 & 
VoltaMaster 4) analytical radiometer. The scanning range for Cyclic Voltammetry was set at -
1200 to 500mV vs. Ag|AgCl at a scan rate of 10mV/s, to measure microbial redox activities. 
Chronoamperometry: Electrical current time series were recorded at a time interval of 30s for 8h at 
a fixed polarization potential  of -1100mV vs. Ag|AgCl, to measure hydrogen kinetics and 
coulombic efficiencies (charge accumulation in µeqQ). All hydrogen gas produced during 
electrolysis was collected from the cathode headspace using a sample lock Hamilton syringe 
(500µl) and then transferred to the gas chromatograph. 
Gas Chromatography: Varian® 3400 GC, stainless steel columns with molecular sieves, He gas 
carrier at 18ml/min, oven temperature at 1800C, thermal conductivity detector at 2000C. Hydrogen 
content was measured using the Residual Gas Analyzer (detection limit at 0.02ppm). Sulfates, 
nitrates and chlorides were measured by Ionic Exchange Chromatography using column and pre-
column A522 at 4mm; a Na2CO3 (3.5mM) and NaHCO3 (1mM) solution was used as eluent at a 
flow rate of 1.2ml/min. The samples were filtered through a Millipore 0.2µm and diluted with DI. 

4. Results and discussion 

4.1 Cyclic voltammetry 

The basic mechanism in MFC operation lies in the transfer of electrons produced by 
microbial respiration to an electrode, instead of a terminal electron acceptor. Microbial consortia 
form biofilms on the surface of the electrode and catabolize the organic substratum, transferring 
exoelectrons collected by the electrode to an external circuit, thus doing work and generating a 
potential difference (VOC) between the electrodes of the MFC. Exoelectrons are stored as 
accumulated charge in Double Layer Capacitance (CDL) formed between the biofilm and the 
electrode; this can be estimated by measuring the average between anodic (Ia) and cathodic (Ic) 
current densities at 0V vs. SHE (-0.2V vs. Ag|AgCl) by cyclic voltammetry, according to the 
current/voltage relationship [16]: 

ሻݐሺ̅ܫ ൌ భ
మ
ሺܫ௔ െ ௖ሻܫ ൌ ஽௅ܥ

ௗ௏

ௗ௧
    (10) 

, where ܸ݀ ⁄ݐ݀  is the scan rate (V/s). Table 1 shows VOC and total accumulated charge values 
(QDL) of the CDL for the three water samples (capacitance of mineral medium set constant at 
44mF/cm2). 
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Table 1: Open circuit voltage (VOC), double layer specific capacitance (CDL) and accumulated charge (QDL) 
measurements for all samples using graphite rod electrodes (in parenthesis under VOC, the respective values 
for carbon paper electrodes); under #e-, the electron densities and under Mbio, the total biofilm mass for each 

sample. 

Sample VOC(mV) CDL(mF/cm2) തܳ஽௅(C) #e-(eq/μmole) Mbio(μg) 

Black Sea 428.0 (364.2) 350 to 400 0.150 to 0.750 7.80 43.8 

River Sabar 322.5 (320.8) 170 to 200 0.064 to 0.280 2.90 16.3 

Lake Siutghiol 311.0 (289.1) 40 0.012 to 0.053 0.55 3.1 

Cyclic voltammetry was used to establish the electron transfer mechanism and to estimate 
the microbial electrocatalytic activity at the graphite electrodes. Figure 4 shows typical 
voltammograms of the biofilms, recorded at a scan rate of 10mV/s after 48h of continuous 
electrode polarization at -1100mV vs. Ag|AgCl. For comparison, the voltammogram of an 
identical abiotic electrode (i.e. blank sample) in anaerobic conditions has been included; as 
expected, voltammetry of the abiotic electrode has not revealed any occurrence of significant 
redox processes in the window +200 to -1200mV vs. Ag|AgCl).   

 
Fig. 4: Cyclic voltammetry for water samples and abiotic medium, at a scan rate of 10mV/s. CVs are 

recorded after polarization at -1100mV vs. Ag|AgCl for 48h. 

In the presence of the microbial biofilms, the cathodic current corresponding to hydrogen 
reduction ranged from –600mV to -1000mV for the Black Sea water sample. The voltage required 
for hydrogen production stayed close to previously reported ones: around -600mV vs. Ag|AgCl 
using Pt-based cathodes [37] and -950mV using stainless steel and specific microbial species [38]. 
Observed values of current densities for the Black Sea sample were higher than other reports – in 
our cases, we also observed large DL capacitance and low biomass density of biofilms. During the 
anodic sweep of the voltammetry, we detected no anodic peak corresponding to H2 oxidation; this 
is indicative of a substantial catalytic bias of the enzymes, which seem to be more active in 
hydrogen-production phase, when terminal electron acceptors (acting as a sink for the electrons 
produced by H2 oxidation) are limited. The waters from Sabar River and Siutghiol Lake showed 
very low hydrogen productivities, the microbial consortia being either very low in concentration or 
not appropriate for bioelectrolysis. The voltammograms also displayed smooth slopes, associated 
with the gradual activation of enzymes in contact with the electrode under polarization - the 
possibility of activating (or deactivating) hydrogenases attached onto a carbon-based electrode by 
electrochemical control has been reported in past works [39]. Continuously increasing the anodic 
potential over -300mV giving a very low cathodic peak at -250 to -300mV is compatible with c-
type cytochromal activity. By comparison, the Black Sea microbial community displayed a high 
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capacity to accept electrons and a higher charge accumulation during bioelectrolysis - the 
bioelectrochemical activities of the microbial communities are also closely influenced by the level 
of organic compounds (e.g. sulfates, nitrites, chlorides) that can poison their oxidative metabolism. 

4.2 Chronoamperometric analysis  

Electric charge accumulation was measured in µeqQ’s from current-time polarization 
curves. Hydrogen concentrations have been evaluated from gas chromatographic measurements 
and the cumulative equivalents for hydrogen production (µeqH2) have been measured, taking into 
account a molar conversion factor of 2µeq/µmol; thus, hydrogen production efficiency was 
calculated as: 

Eୌమ% ൌ ሺμeqHଶ μeqQ⁄ ሻ	x	100%    (10) 

Hydrogen production efficiencies calculated for the water samples are summarized in 
Table 2 and Figure 5. For each sample (except the blank), charge accumulation and hydrogen 
production increased over time, as a function of electrolyte ionic composition and the associated 
kinetics through the cationic membrane. In the Black Sea sample, these reach their maximal 
values; microbial biofilm density and activity were also much higher than in the other samples, in 
agreement with their respective efficiencies, indicating that the microbial consortia display 
different capacities for extracellular electron transfer at the electrodes during hydrogen generation. 
However, hydrogen production efficiencies displayed a different trend: in the Black Sea sample, 
efficiency kept rising even after the 8h mark, when it reached a value of ~57%; in the River Sabar 
and Lake Siutghiol samples, efficiencies reached low peaks (at ~25% and ~5% respectively) at the 
4h mark and kept diminishing gradually until they almost zeroed at 8h. Thus, the microbial 
consortia from River Sabar and Lake Siutghiol do not offer themselves for bioelectrolysis: their 
bioaffinities to the graphite electrode are comparatively low – most probably another kind of 
nanostructured material is needed for the electrode to improve their bioactivities. 

Table 2: Hydrogen productivities and accumulated charges under a polarization of -0.110V vs. Ag|AgCl. 

Time Abiotic medium Black Sea River Sabar Lake Siutghiol 
h µeqQ  µeqH2 µeqQ  µeqH2 µeqQ  µeqH2 µeqQ  µeqH2 

2 9.70 0.00 13.80 0.00 2.64 0.00 3.65 0.00 

4 14.55 0.00 24.25 8.88 8.95 2.20 3.88 0.19 

6 18.65 0.00 33.20 16.56 13.80 1.97 11.19 0.29 

8 25.74 0.00 35.81 20.65 19.77 1.03 14.55 0.32 
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bioelectrolysis (local maximum, as the process had not reached termination even after the 8-hour 
interval); the other samples have much lower efficiencies, reaching their peak values after 4 hours, 
which gradually diminished towards termination after 8 hours - the lowest efficiency of 2.2% was 
obtained from the Lake Siutghiol sample (freshwaters). 

As a secondary objective to our experiments, we have carefully monitored nitrate residues 
in the cathodic chambers of the MECs, before and after hydrogen kinetics measurements - nitrate 
acts as an important nutrient in aqueous ecosystems and high nitrate concentrations signal the 
onset of eutrophication outbreaks that pose a severe environmental hazard; thus, monitoring nitrate 
residues offers insights as to the compatibility of biohydrogen production using MECs in 
wastewater treatment. Nitrate concentrations diminished in all three of our samples during 
bioelectrolysis after an 8-hour interval. The exact mechanism of this phenomenon has not been 
investigated further – it nevertheless provides a milestone into further research concerning 
bioelectrolysis applications in wastewater treatment.  
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