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1. Introduction 
 
Proteins are essential macromolecules that serve both as structural components of the cell 

and as its enzymatic machinery. When stochasticity in this processes is ignored the deterministic 
Michaelis-Menten model which can be understood also as a mean field approach is a good 
approximation. In most cases stochasticity plays a significant role in the process that can not be 
ignored. For example gene expression in both prokaryotes and eukaryotes is inherently stochastic 
[1, 2, 3, 4]. Also, due to the small number of molecules involved, the gene regulation by 
transcription factor proteins is a stochastic process. In general, by measuring the intensity profiles 
of fluorescence markers, we are able to directly observe fluctuations in the concentrations of 
proteins and mRNAs [5,6]. Such stochasticity is both controlled and exploited by the cells, 
therefore must be included in models. 

 Protein synthesis is a tightly gene expression regulated cellular process that affects growth, 
reproduction, aging and survival in response to both intrinsic and extrinsic cues, such as nutrient 
availability and energy levels. The turnover (synthesis) of these proteins is a stochastic process 
that plays a critical role in all biological processes. 

Most of the modeling activity in regard with protein-protein interactions is using 
stochastic simulations and various numerical approaches that require certain approximations [7-
11]. By developing  analytical approaches, to the problem of protein interactions, a new 
understanding can be revealed. 

The aim of this work is to explore minimal models of protein synthesis degradation and 
gain some analytical insight. For clarity of exposition, in the next section we present the analytic 
tools used to find the steady state probability distributions of protein copy numbers in  

the cell and introduce the model in its  general form. After that we are illustrating on an 
concrete case and find an analytical solution. 
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2. Methods and general framework of the model  
 
We envision a protein synthesis degradation process as a continuous in time birth death 

Markov process with a discrete (very large) state space. When two different species or types of 
proteins with a large number of possible states (or copies) are involved, the stochastic model that 
describes such process can be considered a two dimensional birth death Markov process. 

For a simple case where each reaction either creates or annhilates one and only one 
component, and the birth/decay rates are constant, the master equation describing the time 
evolution of the probability distribution gives the flow for π(j, k; t) = πjk, the probability of there 
being j copies of the 1st species, k copies of the second, at time t. 
 
  

௝௞ߨ݀
ݐ݀

ൌ෍෍൫π୨ିଵ୩β ൅ π୨୩ିଵb୨୩ െ π୨୩jδ െ π୨୩kd൯																																			ሺ1ሻ	

ஶ

௞ୀଵ

ஶ

௝ୀଵ

 

 
πjk  is the joint probability distribution of type I and II to have j respective k copies; δ and d are the 
rates of degradation of protein type 1 respectively 2, some constants proportional to the existing 
number of protein copies. The rates of creation for protein type 1 with j copies is β and for protein 
type 2 with k copies is bjk , (see Fig. 1). 
 

 
 

Fig.1 synthesis-degradation of protein type I,II with j, respectively k copies, β, bjk - the 
rate of synthesis for protein type I respectively II, (j and (j+1))δ, ( k and (k+1))d - the rate 
of degradation for  protein type I respectively II,  proportional with the number of protein  
                                                         copies that are degradating. 

 
 

The interaction between the two protein types, I and II is described by a step function as 
following: when protein type 1 gets to a certain threshold θ, protein type 2 is changing the rate of 
creation from b0 to b1 
 

௝ܾ௞ ൌ ൜
ܾ଴, when	݆ ൏ ߠ
ܾଵ,when	݆ ൒  ߠ

 
We will study analytically the stochastic model formulated above in the steady state case 

for a particular choice of states and rules of state transitions. 
Solving master equation (1) analytically for the long time behavior of πjk is generally an 

impossible task when the state space is very large. One, therefore, has to resort on various 
techniques. One such technique often used successfully in stochastic processes literature is the 
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“generating function technique” [12-14]. We remind the reader of some well-known aspects of this 
technique in order to make the present discussion self-contained. 

Assume j is a discrete random variable and assume, for convenience, the state space is                 
{0, 1, 2...}.  Let πj be the probability mass function of j where ∑ ௝ߨ

ஶ
௝ୀ଴  =1; the mean of j satisfy:                 

μj = E(j) =∑ ௝ߨ݆
ஶ
௝ୀ଴  . The probability generating function (p.g.f.) of the discrete random variable j 

is defined by 
 

௝݂ሺݔሻ 	ൌ ௝൯ݔ൫ܧ	 	ൌ ෍ߨ௝ݔ௝
ஶ

௝ୀ଴

 

 
for some xϵR, because ∑ ௝ߨ

ஶ
௝ୀ଴  =1, the above sum converges absolutely for  |1 ≥ |ݔ. As the name 

implies, the p.g.f. generates the probabilities associated with the distribution, where  fj(0) = π0 ,  

௝݂
ᇱሺ0ሻ = π1 , 

 ௝݂
ᇱᇱሺ0ሻ = 2!π2    and in general ௝݂

௡ሺ0ሻ = n!pn  .The p.g.f. gives entire information associated with 
the distribution. Another  known result that we will use  and therefore remind here is that for the 
case when we have just one protein type undergoing a birth death process with a constant birth 
(β)/decay (δ) rate, is a well known fact that in steady state, its stationary probability distribution is 

a Poisson distribution,  i.e,  pj = 
ଵ

௝!
ቀఉ
ఋ
ቁ
௝
݁ିఉ ఋ⁄ , see [13,14]. 

 
 

3. Results: minimal model considered - a two dimensional  
    birth-death process 
 
Given that real biological systems frequently involve small numbers of molecules we 

developed a minimal model where the second protein type can be in 2 possible states: present or 
absent. An example of such situation in real life would be a genetic switch on/off.  

The two protein types undergo a birth/death process with interaction. The creation and 
anihilation rates are the same as in general model with the following specifications: type I protein 
can have any number of copies/states, while type II protein can have only 2 possible copies/states: 
0 or 1, meaning we have no protein or just one protein. The interaction between the 2 protein types 
is as following: the creation rates of the second protein type, bjk , will directly depend by the 
number of copies of first protein type as bellow: 
 

bjk = ൝
ܾ଴, 	݆	݄݊݁ݓ ൑ ߠ	
ܾଵ	݄݊݁ݓ	݆ ൐ ߠ	

	݇	݄݊݁ݓ	0		 ൐ 	1	∀݆
 

 
Note that in this model for simplicity θ = 1, see fig. 2. The result can be easily generalized for any 
θ threshold.  
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Fig. 2 Synthesis-Degradation of the two protein types as a two dimensional birth-death 
problem; Πjk is the joint probability distribution of protein type I and II, where j=1...n; 
k=0,1.   The  creation  rate  of  protein  type  II  is changing from b0 to b1 when number of  
           protein copies  type I is reaching the threshold θ (for simplification here  θ = 1) 
For this model, in steady state the master equation (1) is replaced with bellow equations, 

where we keep the same notation as in equation (1). 
 

j = 0, k = 0 : π00(β + b0) = π10δ + π01d,                                         (2) 
 

j ≥1, k = 0 : πj0(jδ + β + b1) = πj+1;0(j + 1)δ + πj1d + πj−1;0β,          (3) 
 

j = 0, k = 1 : π01(β + d) = π11δ + π00b0,                                           (4) 
 

j ≥1,  k = 1 : πj1(jδ + β + d) = πj+1;1(j + 1)δ + πj0b1 + πj−1;1β,             (5) 
 

Using  generating function technique we simplify our problem. The above equations are 
transformed into ODE’s satisfied by  generating function. 

Let  fk(x) = ∑ ௝ݔ௝௞ߨ
ஶ
௝ୀ଴   be the probability generating function (p.g.f); the differential of 

p.g.f. is:   fk’(x) =∑ ௝ିଵݔ௝௞ߨ݆
ஶ
௝ୀ଴ ; where ∑ ௝ݔ௝௞ߨ

ஶ
௝ୀ଴   converges absolutely for | x | ≤ 1. According 

with the above notation, we have: fk(0) = π0k,   f0(0) = π00, f1(0) = π01   and   f0(x) =∑ ௝ݔ௝଴ߨ
ஶ
௝ୀ଴ ,     

f1(x) =∑ ௝ݔ௝ଵߨ
ஶ
௝ୀ଴  . 
Given that, for the case when we have just one protein type undergoing a birth death 

process with a constant birth/decay rate in steady state, it’s stationary probability distribution is a 
Poisson distribution, and since protein 2 doesn’t influence protein 1, the marginal distribution of 

protein 1 will still be given by the Poisson distribution: pj = πj0 + πj1 =  
ଵ

௝!
ቀఉ
ఋ
ቁ
௝
݁ିఉ ఋ⁄  . It follows 

that marginal, in the generating function notation is correct to right: 
 

f଴ሺxሻ ൅ fଵሺxሻ ൌ෍x୨൫π୨଴ ൅ π୨ଵ൯

ஶ

୨ୀ଴

ൌ෍x୨
ஶ

୨ୀ଴

݁ିఉ ఋ⁄ 	
1
݆!
൬
ߚ
ߜ
൰
௝

ൌ 

 

ൌ ݁ିఉ ఋ⁄ ∑ ଵ

௝!
ቀݔ

ఉ

ఋ
ቁ
௝
ൌ ݁ିఉ ఋ⁄ ݁ି௫ఉ ఋ⁄ ൌ ݁ሺ௫ିଵሻఉ ఋ⁄ 	ஶ

୨ୀ଴                                      (6)    

 
And 
 
 

଴݂
ᇱሺݔሻ ൅ ଵ݂

ᇱሺݔሻ ൌ
ఉ

ఋ
݁ሺ௫ିଵሻఉ ఋ⁄                                                                      (7) 

 
Applying generating function technique on equations 2,3 an ODE equation (eq.8) satisfied by a 
generating function is derived (see Appendix A for details in derivation) 
 

ߜݔ
݀
ݔ݀ ଴݂ሺݔሻ ൅ ሺߚ ൅ ܾଵሻ ଴݂ሺݔሻ ൅ ሺܾ଴ െ ܾଵሻ ଴݂ሺ0ሻ ൌ 

 

ൌ ߜ
ௗ

ௗ௫ ଴݂ሺݔሻ ൅ ଵ݂ሺݔሻ݀ ൅ ଴݂ሺݔሻ(8)                                                            ݔߚ 

 
same procedure applied on eq 4,5 and obtain the following equation: 
 

ߜݔ
݀
ݔ݀ ଵ݂ሺݔሻ ൅ ሺߚ ൅ ݀ሻ ଵ݂ሺݔሻ ൌ 
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ൌ ሺܾ଴ െ ܾଵሻ ଴݂ሺ0ሻ ൅ ߜ
ௗ

ௗ௫ ଵ݂ሺݔሻ ൅ ଴݂ሺݔሻܾଵ ൅ ݔ ଵ݂ሺݔሻ(9)              ߚ 

 
Steps toward obtaining ଴݂ሺݔሻ: From condition (6) and eq.(8) we obtain a new equation (eq.10) in 
the ଴݂ሺݔሻ as unknown. 
 

ሺݔ െ 1ሻߜ
݀
ݔ݀ ଴݂ሺݔሻ ൅ ሾെߚሺݔ െ 1ሻ ൅ ܾଵ ൅ ݀ሿ ଴݂ሺݔሻ ൌ 

                        
                               ൌ ݀݁ሺ௫ିଵሻఉ ఋ⁄ ሺܾଵ െ ܾ଴ሻ ଴݂ሺ0ሻ                                                                       (10) 

 
Solving this equation one will get the analytical expression for generating function  f0(x) . This is a 
first order ODE. Using integrand factor method one gets after some calculations, eq. 11(see 
appendix B for details in derivation).        
 

଴݂ሺݔሻሺ1 െ ሻሺ௕భାௗሻݔ ఋ⁄ ݁ିఉ ఋ௫⁄ െ f଴ሺ0ሻ ൌ 
 

ൌ െ݀݁ିఉ ఋ⁄ 1
ܾଵ ൅ ݀

ൣ1 െ ሺ1 െ ሻሺ௕భାௗሻݔ ఋ⁄ ൧

െ
ሺܾଵ െ ܾ଴ሻ ଴݂ሺ0ሻ

ߜ
න݁ି

ఉ
ఋ௬	

௫

଴

ሺ1 െ ሻቀݕ
௕భାௗ
ఋ ିଵቁ݀ݕ								ሺ11ሻ					 

 
െ	

 
 
Setting  x = 1 in eq. (11) one obtains   f0(0): 
 

଴݂ሺ0ሻ ൌ
݀݁ି

ఉ
ఋ

ܾଵ ൅ ݀
൦

1

1 െ
ሺܾଵ െ ܾ଴ሻ

ߜ ׬ ݁ି
ఉ
ఋ௬	

ଵ
଴

ሺ1 െ ሻቀݕ
௕భାௗ
ఋ ିଵቁ݀ݕ	

൪														ሺ12ሻ 

 
Going back at condition (6): fଵሺxሻ ൌ ݁ሺ௫ିଵሻఉ ఋ⁄ െ ଴݂ሺݔሻ , and  setting   
x = 0 we get : fଵሺ0ሻ ൌ ݁ିఉ ఋ⁄ െ ଴݂ሺ0ሻ 
Knowing  that the derivatives of generating fct at zero gives the probabilities  associated with the 
distribution, we have: 
 
଴଴ߨ ൌ ଴݂ሺ0ሻ;	ߨଵ଴ ൌ ଴݂

ᇱሺ0ሻ;ߨଶ଴ ൌ ଴݂
ᇱᇱሺ0ሻ;-----------;ߨ௡଴ ൌ ଴݂

௡ሺ0ሻ 
and ߨ଴ଵ ൌ ଵ݂ሺ0ሻ;ߨଵଵ ൌ ଵ݂

ᇱሺ0ሻ;ߨଶଵ ൌ ଵ݂
ᇱᇱሺ0ሻ; --------; ߨ௡ଵ ൌ ଵ݂

௡ሺ0ሻ 
 
and as such, one has access to entire distribution. 
 

4. Discussions and conclusions 
 
   Since stochasticity plays a major role in biological processes , I am developing methods 

for solving/describing two dimensional stochastic processes that involve interactions.  The model  
involves the "simple" but biologically important problem of protein interactions and stochastic 
interactions therein. I am building an artificial toy model that describes a two dimensional 
generation/degradation process of two different types of proteins interacting with each other in the 
following manner: the rate of generation of one type of protein changes once the quantity of the 
second protein is above a certain threshold. I use the method of dimensionality reduction for 
approaching this problem and getting an analytical expression for the joint probability distribution. 
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Using generating function technique I’ve shown how one can get an analytical expression 
for joint probability distribution of the two protein types that undergo a birth/death process with 
interaction.  The analytical result can be used to help developing appropiate numerical methods for 
approximating results of the stochastic process when the second protein type has more states. 
Given that biochemical processes frequently involve small numbers of molecules (e.g. a few 
molecules of a transcriptional regulator binding to one ’molecule’ of a DNA regulatory region) 
and such reactions are subject to significant stochastic fluctuations we consider that the minimal 
model considered here is relevant to such context and therefore important to be studied at 
analytical level. 

       Overall this relatively simple model can be used to evaluate the impact of stochastic 
factors in protein folding on biological fitness.  Such analysis  constitute a core unit for 
considering the complexities of multiple stochastic processes that are relevant for protein- protein 
interactions.  
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7. Appendix 
 
A . Apply generating function technique in two state model for obtaining an ODE 

satis_ed by g.f.: eq. (8) 
 
Using generating function technique on equations 2,3 (in equation 2+3 multiply by ݔ௝ and 

sum over j from 0 to ∞ each term) an ODE equation (eq.8)  satisfied by a generating function is 
derived. 
In equation 2+3 multiply by ݔ௝  and sum over j from 0 to ∞ each term. 
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௝ݔ௝଴ߨ෍݆ߜ
∞

௝ୀଵ

൅෍ሺߚ ൅ ܾଵሻߨ௝଴ݔ௝
∞

௝ୀଵ

൅ ଴଴ߨߚ ൅ ܾ଴ߨ଴଴ ൌ 

 

ൌ ෍ሺ݆ߜ ൅ 1ሻߨሺ௝ାଵሻ,଴ݔ௝
∞

௝ୀଵ

൅ ݀෍ߨ௝ଵݔ௝
∞

௝ୀଵ

൅ ௝ݔሺ௝ିଵሻ,଴ߨ෍ߚ
∞

௝ୀଵ

൅ ௝ݔଵ଴ߨ෍ߜ ൅

∞

௝ୀଵ

൅ ݀෍ߨ଴ଵݔ௝
∞

௝ୀଵ

 

 
where each term in the equation can be written: 
I 

௝ݔ௝଴ߨ෍݆ߜ
∞

௝ୀଵ

ൌ ௝ିଵݔ௝଴ߨ෍݆ߜݔ
∞

௝ୀ଴

ൌ ݔ
݀
ݔ݀ ଴݂ሺݔሻߜ 

 
II 
 

෍ሺߚ ൅ ܾଵሻߨ௝଴ݔ௝
∞

௝ୀଵ

െ ሺߚ ൅ ܾଵሻߨ଴଴ݔ଴ ൌ ሺߚ ൅ ܾଵሻf଴ሺxሻ െ ሺߚ ൅ ܾଵሻf଴ሺ0ሻ 

. 
III 

଴଴ߨߚ ൌ ߚ ଴݂ሺ0ሻ 
 
IV 

ܾ଴ߨ଴଴ ൌ ܾ଴ ଴݂ሺ0ሻ 
 
V 

෍ሺ݆ߜ ൅ 1ሻߨሺ௝ାଵሻ,଴ݔ௝
∞

௝ୀଵ

ൌ ෍ሺ݆ߜ ൅ 1ሻߨሺ௝ାଵሻ,଴ݔ௝
∞

௝ୀ଴

െ 	ଵ଴ߨߜ

 
VI 

݀෍ߨ௝ଵݔ௝
∞

௝ୀଵ

ൌ ݀෍ߨ௝ଵݔ௝
∞

௝ୀ଴

െ ଴ଵߨ݀ ൌ ଵ݂ሺݔሻ െ  ଴ଵߨ݀

 
VII 

௝ݔሺ௝ିଵሻ,଴ߨ෍ߚ
∞

௝ୀଵ

ൌ ݔߚ ଴݂ሺݔሻ 

 
VIII  δߨଵ଴ ,   IX 	݀ߨ଴ଵ 
 
introducing all terms from I- IX back in equation we obtain  equation (8): 
 

ߜݔ
ௗ

ௗ௫ ଴݂ሺݔሻ ൅ ሺߚ ൅ ܾଵሻ ଴݂ሺݔሻ ൅ ሺܾ଴ െ ܾଵሻ ଴݂ሺ0ሻ ൌ ߜ
ௗ

ௗ௫ ଴݂ሺݔሻ ൅ ଵ݂ሺݔሻ݀ ൅ ଴݂ሺݔሻݔߚ  

 
Similarly, applying generating function technique on eq 4,5 yields the following equation: 
 

ߜݔ
ௗ

ௗ௫ ଵ݂ሺݔሻ ൅ ሺߚ ൅ ݀ሻ ଵ݂ሺݔሻ ൌ ሺܾ଴ െ ܾଵሻ ଴݂ሺ0ሻ ൅ ߜ
ௗ

ௗ௫ ଵ݂ሺݔሻ ൅ ଴݂ሺݔሻܾଵ ൅ ݔ ଵ݂ሺݔሻ(9)  ߚ 

 
Further, using expression (6) in eq.(8) I obtain equation (eq.10) for f0(x) 
(10) 
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ሺݔ െ 1ሻߜ
݀
ݔ݀ ଴݂ሺݔሻ ൅ ሾെߚሺݔ െ 1ሻ ൅ ܾଵ ൅ ݀ሿ ଴݂ሺݔሻ ൌ ݀݁ሺ௫ିଵሻఉ ఋ⁄ ሺܾଵ െ ܾ଴ሻ ଴݂ሺ0ሻ 

 
                        
B Derivations of eq.8 in two state model-Integrating factor method 
  

ሺݔ െ 1ሻߜ
݀
ݔ݀ ଴݂ሺݔሻ ൅ ሾെߚሺݔ െ 1ሻ ൅ ܾଵ ൅ ݀ሿ ଴݂ሺݔሻ ൌ ݀݁ሺ௫ିଵሻఉ ఋ⁄ ሺܾଵ െ ܾ଴ሻ ଴݂ሺ0ሻ 

 
 
multiply above  eq. with the integrand factor: 
 

ൣሺݔ െ 1ሻߜ ଴݂
′ሺݔሻ ൅ ሺെߚሺݔ െ 1ሻ ൅ ܾଵ ൅ ݀ሻ ଴݂ሺݔሻ൧݁

׬
௕భାௗିఉሺ௬ିଵሻ

ሺ௬ିଵሻఋ ௗ௬
ೣ
బ ൌ 

 
 

ሺݔ െ 1ሻߜ
݀
ݔ݀

ቆ ଴݂ሺݔሻ݁
׬

௕భାௗିఉሺ௬ିଵሻ
ሺ௬ିଵሻఋ ௗ௬

ೣ
బ				 ቇ ൌ 

 

ൌ ቀ݀݁ሺ௫ିଵሻఉ ఋ⁄ ൅ ሺܾଵ െ ܾ଴ሻ ଴݂ሺ0ሻቁ ݁
׬
௕భାௗିఉሺ௬ିଵሻ

ሺ௬ିଵሻఋ ௗ௬
ೣ
బ  

 
where: 

න
ܾଵ ൅ ݀ െ ݕሺߚ െ 1ሻ

ሺݕ െ 1ሻߜ
ݕ݀

௫

଴

ൌ െ
ߚ
ߜ
ݔ ൅ lnሺ1 െ ሻݔ

௕భାௗ
ఋ  

 
therefore: 
 

݁
׬ 		

௕భାௗିఉሺ௬ିଵሻ
ሺ௬ିଵሻఋ ௗ௬

ೣ
బ ൌ ሺ1 െ ሻݔ

௕భାௗ
ఋ 		݁

ି൬
ఉ
ఋ൰௫ 

 
from here we get by dividing  with (x - 1)δ: 
 

ቆ
݀
ݔ݀ ଴݂ሺݔሻ݁

׬ 		
௕భାௗିఉሺ௬ିଵሻ

ሺ௬ିଵሻఋ ௗ௬
ೣ
బ ቇ ൌ

1

ሺݔ െ 1ሻߜሾ݀݁ሺ௫ିଵሻఉ ఋ⁄ ሺܾଵ െ ܾ଴ሻ ଴݂ሺ0ሻሿ݁
ି൬
ఉ
ఋ൰௫݁ቀ

௕భାௗ
ఋ ቁ logሺ1 െ ሻݔ

 

  
Integrating this eq. we obtain: 
(10) 
 

଴݂ሺݔሻ݁
׬ 		

௕భାௗିఉሺ௬ିଵሻ
ሺ௬ିଵሻఋ ௗ௬

ೣ
బ െ ଴݂ሺ0ሻ ൌ 

 

ൌ െනቀ݀݁ሺ௬ିଵሻఉ ఋ⁄ ൅ ሺܾଵ െ ܾ଴ሻ ଴݂ሺ0ሻቁ

௫

଴

݁
ି൬
ఉ
ఋ൰௬

1
ߚ

1

ሺ1 െ ሻቂଵିቀݕ
௕భାௗ
ఋ ቁቃ

 

or equation. (11.a): 
 

଴݂ሺݔሻሺ1 െ ሻݔ
௕భାௗ
ఋ 		݁

ି൬
ఉ
ఋ൰௫ െ ଴݂ሺ0ሻ ൌ ଵܫ ൅  ଶܫ

 
where 
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ଵܫ ൌ െ
݀
ߜ
න݁

ఉ
ఋሺ௬ିଵሻ݁

ି൬
ఉ
ఋ൰௬

1

ሺݕ െ 1ሻ
ି௕భାௗ

ఋ ାଵ
ݕ݀ ൌ

	

௫

଴

 

 

ൌ െ݀݁
ି൬
ఉ
ఋ൰

1
ܾଵ ൅ ݀

ൣ1 െ ሺ1 െ ሻሺ௕భାௗሻݔ ఋ⁄ ൧ 

and 
 

ଶܫ ൌ െ
ሺܾଵ െ ܾ଴ሻ ଴݂ሺ0ሻ

ߜ
න ݁

ି൬
ఉ
ఋ൰௬

௫

଴

ሺ1 െ ሻቀݕ
௕భାௗ
ఋ ିଵቁ݀ݕ 

 
by introducing the expression ܫଵ and ܫଶ in equation [11] we obtain the 
expression for  f0(x): 
 

[11]       ଴݂ሺݔሻሺ1 െ ሻݔ
್భశ೏
ഃ 		݁ିቀ

ഁ
ഃ
ቁ௫ െ ଴݂ሺ0ሻ ൌ 

 

ൌ െ݀݁
ି൬
ఉ
ఋ൰

1
ܾଵ ൅ ݀

ൣ1 െ ሺ1 െ ሻሺ௕భାௗሻݔ ఋ⁄ ൧ െ 

 

െ
ሺܾଵ െ ܾ଴ሻ ଴݂ሺ0ሻ

ߜ
න ݁

ି൬
ఉ
ఋ൰௬

௫

଴

ሺ1 െ ሻቀݕ
௕భାௗ
ఋ ିଵቁ݀ݕ 

 
 
 


