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In this research, we investigated the optical properties of CdSe thin films on glass substrates 
using spectroscopic ellipsometry. The samples were analysed using an M-2000 rotation 
compensator spectroscopic ellipsometer at room temperature, covering a photon energy 
range of 1.5-7.0 eV. We used an appropriate dispersion model to obtain the spectral 
dispersion of the optical constants. We calculated the thickness, dielectric permittivity (real 
and imaginary parts), refraction, and extinction coefficients of the thin layers. The results 
showed high transparency that varied with the size of the CdSe thin films. Additionally, we 
determined the bandgap width for samples with thicknesses of 350 nm and 400 nm, which 
were produced using the chemical deposition method. 
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1. Introduction 
 
The compound CdSe belongs to the II-VI group of complex semiconductors. It is widely 

used in fundamental research and various technological applications due to its wide absorption 
spectrum across the visible spectrum. There is a known technology for increasing the width of the 
forbidden zone in thin layers of this compound, but a comprehensive optical analysis validating this 
technology has not been proposed. The physical properties of cadmium selenide are directly affected 
by its size and shape, making nanostructures of this compound useful in solar cells, lasers, and light-
emitting diodes. In recent years, significant progress has been made in the research of CdS and CdSe 
nanostructures. The study of the structure and optical parameters of thin layers of these materials 
has further increased interest in them  [2-4]. 

There are several research methods for studying the optical properties of thin films, with 
Spectroscopic Ellipsometry being one of the most prominent. Ellipsometry is recognized globally 
as an ideal technique for investigating the physical parameters of thin films and is widely employed 
in optoelectronics [5-7]. This method is particularly powerful because it allows for precisely 
determining the state of the light signal using four Stokes parameters. As the world standard for 
studying solid, liquid, and gaseous environments, ellipsometry provides a highly accurate means of 
determining these Stokes parameters [8-10]. Consequently, results obtained through ellipsometry 
spectroscopy comprehensively cover experimental optical studies [11-14]. 

A key characteristic derived from ellipsometry investigations is the dielectric function of 
the system. The dielectric function serves as a unique "dielectric fingerprint," determined within the 
frequency range corresponding to the electronic transitions and vibrational excitations of the 
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molecules and atoms in the sample. Understanding the optical properties of thin layers, especially 
as they vary with the thickness of multilayer structures, is of great importance. 

Unlike standard methods that measure light based on emission and absorption, ellipsometry 
measures the polarization state of light rather than its intensity. This distinction enables ellipsometry 
to determine optical parameters with greater accuracy. Another significant advantage of this method 
is its ability to analyze individual components of complex systems over a wide spectral range. 

The technique of ellipsometry measurements relies on analyzing the changes in polarization 
parameters Ψ and Δ after a linearly polarized light beam reflects off the surface of a sample. These 
changes are expressed through two variables, Ψ and Δ, which describe the phase shift and the ratio 
of the amplitudes of the components parallel (p) and perpendicular (s) to the plane of incidence of 
the light's electric field. These quantities are represented as the ratio of the Fresnel coefficients rp 

and rs for p- and s-polarized light, respectively: 
 

𝜌𝜌 = 𝑟𝑟𝑝𝑝
𝑟𝑟𝑠𝑠

= 𝑡𝑡𝑡𝑡𝑡𝑡Ψ𝑒𝑒𝑖𝑖Δ                                                                (1) 

 
The results of ellipsometric measurements on a bulk material with a defect-free surface can 

be directly converted into the material's optical constants: the refractive index n and the extinction 
coefficient k: 
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�
2
�                              (2) 

 
In practical applications, the previously mentioned possibilities are seldom encountered, as 

real materials typically have surface defects, oxides, and other imperfections [15-17]. In such cases, 
an optical model that describes the optical parameters of the system is constructed and compared 
with experimental results. 

The optical properties of CdSe thin films have not been fully studied, despite extensive 
research into their physical properties. In this study, we obtained 350 nm and 400 nm thick cadmium 
selenide thin films and analyzed their optical parameters using Spectroscopic Ellipsometry. 

 
 
2. Experimental 
 
CdSe thin films were deposited onto glass substrates using a standard chemical deposition 

method [18-20]. The optical properties of these thin films were analyzed using a spin-compensated 
Spectroscopic Ellipsometer (M-2000DI, J.A. Woollam Co., Inc.) over a photon energy range of 1.5–
7 eV, at room temperature, with incidence angles varying from 55° to 70°. An optimal incidence 
angle of 65° was used for the analyses. A three-layer optical model was employed to interpret the 
experimental results across the entire photon energy range. The constructed model for the thin film 
system is depicted in Figure 1.  

 
 

 
 

Fig. 1. The optical model used in the analysis. 
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The optical model, depicted in Figure 1, comprises three distinct layers: a glass substrate, a 

CdSe thin layer, and a CdSe:O+ void layer situated on the surface of the thin layer. The optical 
properties of the CdSe thin film were simulated using appropriate Gaussian and PsemiTri dispersion 
models, while the optical properties of the surface layer were acquired using the Bruggeman 
Effective Medium Approximation (BEMA) applied to the CdSe:O and cavity mixture [21]. The 
surface roughness is determined based on the established model. Using linear regression analysis 
(XRA), the following parameters were determined: d – thickness of CdSe thin layers, ε1 and ε2 – 
real and imaginary part of the dielectric function of CdSe layers, n – refractive index, and k – 
extinction coefficient. 

 
 
3. Result and discussion 
 
The thicknesses of the CdSe thin films were determined by fitting the experimental results 

to a model designed for two different layered structure samples. It was found that the thicknesses of 
the thin layers obtained through the chemical deposition method were 350 nm and 400 nm. The 
optical constants of these thin films were calculated using the Gaussian and PsemiTri oscillators as 
part of the oscillator model. Throughout the calculations, the root mean square error fluctuated 
around 1, indicating that the optical model accurately describes the experimental parameters. The 
dielectric functions of CdSe thin films with different thicknesses obtained from the analysis are 
illustrated in Figure 2.  

 
 

          
 

Fig. 2. The real and imaginary parts of the dielectric function of 350 nm and 400 nm thick CdSe thin films. 
 

 
A comparison of the imaginary parts of the dielectric function is shown in Figure 3 for CdSe 

thin films with thicknesses of 350 nm and 400 nm. In Figure 3, it is evident that the energy transitions 
of CdSe thin films correspond to the CdSe crystal, but the width of the forbidden zone shifts to 
shorter wavelengths as the film thickness decreases. The studies revealed that the width of the 
forbidden zone in a CdSe crystal is 1.7 eV, while in a thin layer of CdSe with a thickness of d = 350 
nm, Eg = 2.2 eV and Eg = 1.9 eV in a thin layer with a thickness of d = 350 nm. 
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Fig. 3. Comparison of the imaginary parts of the dielectric functions of 350 nm and 400 nm  
thick CdSe thin films. 

 
 

              
 

Fig. 4. Refractive and extension coefficients of CdSe thin films at 350 and 400 nm thickness. 
 
 
Based on the results of studies conducted using the spectroscopic ellipsometry method, the 

extension and refraction coefficients of 350 nm and 400 nm thick CdSe thin layers were calculated 
(see Figure 4). The extension and refraction coefficients of CdSe thin films were determined in the 
energy interval of 1.5-7 eV. According to the results, the refractive index of a thin film with a 
thickness of d = 400 nm is 2.3-2.8 eV, and a CdSe thin film with a thickness of d = 350 nm varies 
in the range of 2.1-2.9 eV, corresponding to the range of the refractive index of the CdSe crystal 
(2.5-2.65 eV). The research revealed that, like the CdSe crystal, which has high transparency in the 
visible region and the ability to absorb ultraviolet rays, the studied thin layers of different thicknesses 
also exhibit these properties. The study of the change in optical constants of CdSe thin films using 
modern methodology expands their potential applications in various optical devices. 

 
 

4. Conclusion 
 
In this study, we examined CdSe thin films created on glass substrates using the chemical 

deposition method and analyzed them using spectroscopic ellipsometry. We used a dispersion model 
to calculate the optical constants and determine the thickness, dielectric permittivity (real and 
imaginary part), refraction, and extension coefficients of the thin layers. We found that the width of 
the forbidden zone in the 350 nm and 400 nm thick cadmium selenide thin films corresponds to Eg 
= 1.9 eV and Eg = 2.2 eV. The widening of the forbidden zone is attributed to the phase formation 
process within the thin layers. Additionally, we observed that as the thickness of the thin layers 
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increased, the width of the forbidden zone adapted to the CdSe crystal due to the phase formation 
process. 
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