GAP MICRO-LITHOGRAPHY FOR CHALCOGENIDE MICRO-LENS ARRAY FABRICATION

M. Manevich*, M. Klebanov*, V. Lyubina, J. Varshal, J. Broder, N. P. Eisenberg
Department of Electro-optics, Jerusalem College of Technology, Jerusalem 91160, Israel
“Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel

A newly developed technique, gap micro-lithography, used for the formation of I.R. micro-optical devices such as micro-lens arrays with a very long focal length, is described. The use of a three-component As-S-Se photoresist with a new efficient amine-based selective developer allows for the realization of soft contrast characteristics of the micro-lithographic process with a Xe-light source. Parameters and characteristics of micro-optical devices made using the gap micro-lithography method are discussed.

(Received March 16, 2008; accepted March 21, 2008)

Keywords: Gap micro-lithography, Chalcogenide glassy film, Chalcogenide photoresist, Micro-lens array

1. Introduction

Micro-optical devices such as micro-lens arrays and particularly functioning in the infra-red (I.R.) optical range are increasingly applied in optoelectronics in such fields as micro imaging, optical computing and communication, CCD cameras, beam shaping, and medical tomography [1-4].

Fabrication of micro-optical devices using chalcogenide photoresists is essentially the direct one-step formation of a 3D element array using dependence of the developing rate on illumination intensity. Several techniques for I.R. micro-lens array fabrication based on As-Se and As-S chalcogenide photoresists have been developed previously. The arrays of spherical and cylindrical micro-lenses with a sag of ≤ 0.19 µm and a focal length of ≤ 31 µm were fabricated by one technique using the modified proximity micro-lithography method [5, 6].

In spite of many advantages, these micro-lens arrays also have some drawbacks. The maximum sag in the micro-lenses is limited to 0.19 µm, which together with the small micro-lens size, limited the achievable focal length. Another drawback is the poor shape of the convex surface obtained, a consequence of the short quasi-linear section of the contrast characteristic (dependence of remaining photoresist thickness on dose irradiation), when using As-Se and As-S chalcogenide photoresists.

Larger micro-lens sag, up to 5 µm, has been realized by using the combined micro-lithography thermal reflow method [7, 8]. However this method has a very serious disadvantage related to the limit of the ratio of the diameter to the sag of a micro-lens. This value should be no more than 10, in order to obtain a properly shaped micro-lens. This ratio limits the achievable focal length to 1.3 · d, where d is the diameter of a single micro-lens.

The gray scale lithography method [9] uses a unique, very complicated, and expensive mask with a transmission gradient in the contact mode to directly create a designed shape in chalcogenide photoresists. Micro-lens arrays with a very wide range of focal lengths can be produced by this technique. The most important drawbacks of this method are the mask complications and high cost.

*Corresponding author: michaelm@jct.ac.il
2. Gap micro-lithography method

A new simple and economical technique gap micro-lithography is described in the present letter. The technique is used in the formation of new micro-optical devices: I.R. plano-convex micro-lens arrays with very long focal lengths.

Such arrays were fabricated using ~ a 3.0 µm thick 1As₂S₃ · 1As₂Se₃ photoresist layer which was deposited by vacuum thermal evaporation onto a glass substrate [10, 11]. The photoresist combines high photosensitivity with the soft contrast characteristic of the micro-lithographic process when used together with a Xe-lamp as the exposure light source and an efficient amine-based selective developer. This contrast characteristic has a long quasi-linear section, which is much longer than in previously used As-Se and As-S chalcogenide photoresists (Fig. 1). The negative-type developer used is characterized by high selectivity, i.e. a high ratio of the dissolution rates in non-irradiated and irradiated areas (γ). A γ value of ~ 40 is achieved with moderate radiation intensity (30 mW/cm² at λ = 532 nm).

![Graph](image1.png)

Fig. 1. Contrast characteristics of As₅₀Se₅₀ and 1As₂S₃ · 1As₂Se₃ chalcogenide photoresists.
Arrays of 70 – 100 µm diameter holes in chromium layers on glass substrates were used as binary masks. The micro-lithography process was performed with a gap between a chalcogenide photoresist film and the mask surface (Fig. 2). Changing the distance between the illuminated mask surface and the chalcogenide film modifies the profile of the light distribution from a flat to a rounded one, and the optimum plano-convex shape according to the desired specification (diameter and sag of the micro-lens) can be realized. A 550 µm gap between the binary mask surface and the chalcogenide photoresist film and a 1 minute exposure to a Xe-light source led to the formation of the micro-lens arrays. They were measured using a Zygo Corporation (USA) micro-interferometer. Primary parameters of the micro-lens arrays are shown in the Table.

![Fig. 2. A proposed gap micro-lithography method for plano-convex micro-lens array fabrication: a. exposure of a chalcogenide film through a binary mask with a gap between the mask and chalcogenide surfaces. b. development of the chalcogenide film and micro-lens array formation. 1 – binary mask substrate; 2 – chromium; 3 – light exposure; 4 – form of light intensity distribution; 5 – glass substrate; 6 – chalcogenide film; 7 – gap between a binary mask and chalcogenide surfaces; 8 – fabricated micro-lens array.]

Table. Primary parameters of the plano-convex micro-lens arrays fabricated.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Micro-lens diameter, µm</td>
<td>114.8</td>
<td>171.1</td>
</tr>
<tr>
<td>Micro-lens sag, µm</td>
<td>0.42</td>
<td>0.85</td>
</tr>
<tr>
<td>Radius of curvature, µm</td>
<td>1,940</td>
<td>8,710</td>
</tr>
<tr>
<td>Focal length, µm</td>
<td>1,227</td>
<td>5,634</td>
</tr>
<tr>
<td>Micro-lens array pitch, µm</td>
<td>300 x300</td>
<td></td>
</tr>
<tr>
<td>Micro-lens array size, mm</td>
<td>12 x 12</td>
<td></td>
</tr>
<tr>
<td>Roughness, nm</td>
<td>0.5</td>
<td></td>
</tr>
</tbody>
</table>
Fig. 3 shows a single plano-convex micro-lens of an array. The surface quality of all fabricated micro-devices (shape, roughness) was extremely high with good reproducibility of their parameters.

3. Conclusion

In this letter, a newly developed technique, gap micro-lithography for fabrication of I.R. plano-convex micro-lens arrays with very long focal lengths of $1,227 \sim 5,634 \mu m$ was reported. Simple binary masks, $1As_2S_3 \cdot 1As_2Se_3$ chalcogenide photoresist films with a thickness of $\sim 3.0 \mu m$, and an efficient amine-based selective developer were used in the fabrication of these micro-lens arrays.

References