
Digest Journal of Nanomaterials and Biostructures Vol. 3, No. 3, September 2008, p. 147- 158 
 
 

 
 

THREE-DIMENSIONAL QSAR STUDY OF 2,4 - DISUBSTITUTED-PHENOXY 
ACETIC ACID DERIVATIVES AS A CRTh2 RECEPTOR ANTAGONIST:  

USING THE k-NEAREST NEIGHBOR METHOD 
 

 

Abhishek K. Jaina, Nimita Manochac , V. Ravichandrana V. K. Mouryab, R. K. 
Agrawala* 
a Pharmaceutical Chemistry Research Laboratory, Dept. of Pharmaceutical 
Sciences, 
Dr. Hari Singh Gour University, Sagar (M.P) - 470 003, India. 
b Govt. College of Pharmacy, Osmanpura, Aurangabad, Maharashtra, India. 
cSwami Vivekanand College of Pharmacy, Indore (M.P.) 
 
 
In pursuit of better CRTh2 receptor antagonist  agents, 3D- QSAR studies were performed 
on a series of 2,4 -disubstituted-phenoxy acetic acid derivatives. In this paper we report a 
novel three-dimensional QSAR approach, kNN-MFA, developed based on principles of 
the k-nearest neighbor method combined with various variable selection procedures. The 
kNN-MFA approach was used to generate models  by all three different methods and 
predict the activity of test molecules through each of these models. The q2, pred_r2, Vn 
and k value of kNN-MFA with SW, SA & GA were (0.8392, 0.7059, 2/2 ) (0.6725, 
0.6716, 2/4 ) and (0.6832, 0.6716, 2/4 ) although there are no common descriptors among 
these three methods, SW kNN-MFA method have better q2 (0.8392) and pred_r2 (0.7059) 
than other two methods, model validation  correctly predicts activity 83.9% and 70.5% for 
the training and test set respectively. It uses 2 steric descriptors with 2 k nearest neighbor 
to evaluate activity of new molecule, So model generated by SA kNN-MFA are best 
model. 
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1. Introduction  
 
The lipid mediator prostaglandin D2 (PGD2) is implicated in various inflammatory disease 

including asthma.1-2. PGD2 exhibit its biological responses by activating two seven transmembrane (7TM) 
G-protein coupled receptors, the D-prostanoid receptor DP and the chemoattractant receptor homologous-
molecule expressed on T-helper-type-2 cells (CRTh2), which are linked to different signaling pathways. 
CRTh2 negatively regulates adenylyl cyclases through Gi proteins, mobilizes intracellular calcium, and 
stimulates phosphoinositide 3-kinase, mitogen-activated protein kinases and phospholipase C 2 . 

Endogenous agonists for CRTh2 include PGD2 and a number of its metabolites, notably 
13,14-dihydro-15-keto PGD2 (DK-PGD2), which is selective for CRTh2 over DP1. Activation of 
CRTh2 promotes chemotaxis of Th2 cells, eosinophils and basophils, as well as degranulation of 
eosinophils and cytokine release from Th2 cells.2  

The orally available small molecule ramatroban also antagonizes CRTh2 with a potency 
sufficient to account at least in part for the beneficial clinical effects of ramatroban3-5. However, 
the inability of ramatroban to selectively inhibit one receptor potent and selective CRTh2 
antagonists would be desirable to explore the involvement of PGD2 and CRTh2 in allergic and 
atopic conditions. 

                                                 
*Corresponding author: dragrawal2001@yahoo.co.in 
 



 
 

148 

The present group of authors has developed a few quantitative structure-activity 
relationship models to predict biological activity of different group of compounds. 6-12 

Many different approaches to QSAR have been developed over the years. The rapid 
increase in three-dimensional structural information (3D) of bioorganic molecules, coupled with 
the development of fast methods for 3D structure alignment (e.g. active analogue approach), has 
led to the development of 3D structural descriptors and associated 3D QSAR methods. The most 
popular 3D QSAR methods are comparative molecular field analysis (CoMFA)13 and comparative 
molecular similarity analysis (CoMSIA).14 The CoMFA method involves generation of a common 
threedimensional lattice around a set of molecules and calculation of the steric and electrostatic 
interaction energies at the lattice points. The interaction energies are numerically very high when a 
lattice point is very close to an atom and special care needs to be taken in order to avoid problems 
arising because of this. The CoMSIA method avoids these problems by using similarity function 
represented as Gaussian. This information around the molecule is converted into numerical data 
using the partial least squares (PLS) method that reduces the dimensionality of data by generating 
components. However, a major disadvantage is that PLS attempts to fit a linear curve among all 
the points in the data set. Further, the PLS method does not offer scope for improvement in results. 
It has been observed from several reports that the predictive ability of PLS method is rather poor 
due to fitting of a linear curve between the available points. In the case of the CoMSIA method, 
molecular similarity is evaluated and used instead of molecular field, followed by PLS analysis. 

Variable selection methods have also been adopted for optimal region selection in 3D 
QSAR methods and shown to provide improved QSAR models as compared to the original 
CoMFA technique. For example, GOLPE15 was developed using chemometric principles, and q2-
GRS was developed on the basis of independent analyses of small areas (or regions) of near-
molecular space to address the issue of optimal region selection in CoMFA.16 These considerations 
provide an impetus for the development of fast, generally nonlinear, variable selection methods for 
performing molecular field analysis. We report here the development of a new method (kNN-
MFA) that adopts a k-nearest neighbor principle for generating relationships of molecular fields 
with the experimentally reported activity. This method utilizes the active analogue principle that 
lies at the foundation of medicinal chemistry. 

 
2. Methodology 
 
We hereby report the models, as generated by kNN-MFA in conjunction with simulated 

annealing (SA), genetic algorithm (GA), and stepwise (SW) forward variable selection methods. In 
the kNN-MFA method, several models were generated for the selected members of training and 
test sets, and the corresponding best models are reported herein. 

VLife Molecular Design Suite (VLifeMDS), allows user to choose probe, grid size, and 
grid interval for the generation of descriptors. The variable selection methods along with the 
corresponding parameters are allowed to be chosen, and optimum models are generated by 
maximizing q2. k-nearest neighbor molecular field analysis (kNN-MFA) requires suitable 
alignment of given set of molecules. This is followed by generation of a common rectangular grid 
around the molecules. The steric and electrostatic interaction energies are computed at the lattice 
points of the grid using a methyl probe of charge +1. These interaction energy values are 
considered for relationship generation and utilized as descriptors to decide nearness between 
molecules. The term descriptor is utilized in the following discussion to indicate field values at the 
lattice points. The optimal training and test sets were generated using the sphere exclusion 
algorithm.17 This algorithm allows the construction of training sets covering descriptor space 
occupied by representative points. Once the training and test sets were generated, kNN 
methodology was applied to the descriptors generated over the grid. 

 
Nearest Neighbor (kNN) Method 
 
The kNN methodology relies on a simple distance learning approach whereby an unknown 

member is classified according to the majority of its k-nearest neighbors in the training set. The 
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nearness is measured by an appropriate distance metric (e.g., a molecular similarity measure 
calculated using field interactions of molecular structures). The standard kNN method is 
implemented simply as follows:18Calculate distances between an unknown object (u) and all the 
objects in the training set; select k objects from the training set most similar to object u, according 
to the calculated distances; and classify object u with the group to which the majority of the k 
objects belongs. An optimal k value is selected by optimization through the classification of a test 
set of samples or by leave-one out cross-validation. 

 
kNN-MFA with Simulated Annealing  
 
Simulated annealing (SA) is the simulation of a physical process, ‘annealing’, which 

involves heating the system to a high temperature and then gradually cooling it down to a preset 
temperature (e.g., room temperature). During this process, the system samples possible 
configurations distributed according to the Boltzmann distribution so that at equilibrium, low 
energy states are the most populated. 

 
 
kNN-MFA with Stepwise (SW) Variable Selection  
 
This method employs a stepwise variable selection procedure combined with kNN to 

optimize the number of nearest neighbors (k) and the selection of variables from the original pool 
as described in simulated annealing. 

 
 
kNN-MFA with Genetic Algorithm  
 
Genetic algorithms (GA) first described by Holland19 mimic natural evolution and 

selection. In biological systems, genetic information that determines the individuality of an 
organism is stored in chromosomes. Chromosomes are replicated and passed onto the next 
generation with selection criteria depending on fitness. 

 
 
Cross-Validation Using Weighted k-Nearest Neighbor. 
 
(1) A molecule in the training set was eliminated, and its biological activity was predicted 

as the weighted average activity of the k most similar molecules (eq 1). The similarities were 
evaluated as the inverse of Euclidean distances between molecules (eq 2) using only the subset of 
descriptors corresponding to the current trial solution. 
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(2) Step 1 was repeated until every molecule in the training set has been eliminated and its activity 
predicted once. 
(3) The cross-validated r2 (q2) value was calculated using eq 3, where yi and yˆi are the actual and 
predicted activities of the ith molecule, respectively, and ymean is the average 

k-Nearest neighbour
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activity of all molecules in the training set. Both summations are over all molecules in the training 
set. Since the calculation of the pairwise molecular similarities, and hence the predictions, were 
based upon the current trial solution, the q2 obtained is indicative of the predictive power of the 
current kNN-MFA model. 
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External Validation. 
 
The predicted r2 (pred_r2) value was calculated using eq 4, where yi and yˆi are the actual 

and predicted activities of the ith molecule in test set, respectively, and ymean is the average activity 
of all molecules in the training set. Both summations are over all molecules in the test set. The 
pred_r2 value is indicative of the predictive power of the 
current kNN-MFA model for external test set. 
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Randomization Test.  
 
 
To evaluate the statistical significance of the QSAR model for an actual data set, we have 

employed a one-tail hypothesis testing.20-21 The robustness of the QSAR models for experimental 
training sets was examined by comparing these models to those derived for random data sets. 
Random sets were generated by rearranging biological activities of the training set molecules. The 
significance of the models hence obtained was derived based on calculated Zscore.20-21 

 
Evaluation of the QSAR Models.  
 
The QSAR models were evaluated using following statistical measures: n, number of 

observations (molecules); Vn, number of descriptors; k, number of nearest neighbors; q2, cross-
validated r2 (by the leave-one-out method); pred_r2, predicted r2 for the external test set; Zscore, the 
Z score calculated by q2 in the randomization test; best_ran_q2, the highest q2 value in the 
randomization test; and R, the statistical significance parameter obtained by the randomization 
test. 

 
Experimental 
 
The biological activities of all 31 compounds were collected from the reported series5 

(Table 3) . All the thirty one compounds were built on workspace of molecular modeling software 
VLifeMDS, which is a product VLife Sciences Pvt Ltd.,India22. We here by report the models, as 
generated by kNN-MFA in conjunction with simulated annealing (SA), genetic algorithm (GA), 
and stepwise (SW) forward variable selection methods (Table 4) .In the kNN-MFA method, 
several models were generated for the given or selected members of training and test sets, and the 
corresponding best models are reported herein. The method described above has been 
implemented in a software, VLife Molecular Design Suite (VLifeMDS),22 which allows user to 
choose probe, grid size, and grid interval for the generation of descriptors. The variable selection 
methods along with the corresponding parameters are allowed to be chosen, and optimum models 
are generated by maximizing q2. 
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Steps involved in kNN-MFA method 
 
1. Molecules are optimized before alignment optimization is done by MOPAC energy 

minimization and optimization is necessary process for proper alignment of molecules around 
template. 

2. kNN-MFA method requires suitable alignment of given set of molecules, alignment are 
template based 

3. This is followed by generation of common rectangular grid around the molecules, the 
steric and electrostatic interaction energies are computed at the lattice points of the grid using a 
methyl probe of charge +1. 

4. The optimal training and test set were generated using sphere exclusion method. 
5. Model was generated by various kNN methods, and models validated internally and 

externally by leave one out, external validation (q2, r2). 
6. Predict the activity of test set of compounds. 

 
Training and test set    
 
Selection of training and test set by using sphere exclusion method for choosing uniformly 

distributed molecules in both sets. (compound number 9, 19, & 20 were selected for test set ) 
 

Table 1- Uni-Column statistics for training set 
 

Col. name Average Max Min stdDev sum 
Column 4.0150 5.8539 1.8928 0.524 112.4188 
 

Table 2- Uni-Column statistics for test set 
 

Col. name Average Max Min stdDev sum 
Column 4.2827 5.8239 2.7055 0.539 12.8482 
The max of the test should be less than or equal to max of train set and the min of the test should 
be greater than or equal to min of train set. 
 
 
Table 3. Structure, CRTh2 antagonist  activity (IC50 in nm) of 2,4-disubstituted-phenoxy acetic acid 
derivatives. 
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14 

 
Br 

 
t-Bu 

 
61 

 
15 

 
Br 

 
HOCH2- 

 
886 

         Compound 9-15                                                           Compound 15-31 
 
 
 
 

Compound R2 R1 R IC50 (in nm) 
bindinga 

16 H H H 510 

17 H F H 108 

18 H Cl H 15 

19 H Br H 1.5 

20 H CH3 H 48 

21 H OCH3 H 151 

22 H NO2 H 47 

23 H Ph H 42 

24 H 4-Cl-C6H4 H 37 

25 H 3,5-F-C6H3 H 13 

26 Et Br p-OCH3 165 

27 H Br p-Cl 3.6 

28 H Br p-Br 1.5 

29 H Br p-Br 1.4 

30 H Br m-Br 3.4 

31 H Br o-Br 1.9 
 

Table 4 - Comparison of the various kNN-MFA models for CRTh2  receptor antagonist 
 
kNN-MFA 
Method       

      Descriptors  Statistical Parameter 

 
Stepwise (SW) 
Variable Selection 
 
 
 
 
 
Simulated 
Annealing (SA) 
 
 
 

 
S_1580 (-0.0082 -0.0080) 
S_394   (-0.0023 -0.0023) 
 
 
 
 
 
 
S_21  (-0.0010 -0.0006) 
S_183  (-0.0029 -0.0029) 
E_1244(-0.8367 -0.6487) 
E_254  (-0.0103 0.0017) 

 
q2=0.839, pred_r2=0.7059,  
Z score= 3.195, 
best_rand_q2=0.194, 
pred_r2se=0.8642, 
α = 〉0.001, k/Vn=2/2, 
n= 28, test size= 3 
 
 
q2=0.672, pred_r2=0.6502,  
Z score= 4.185, best_rand_q2= 
-0.1003, 
pred_r2se=0.9425 
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Genetic 
Algorithm (GA) 

 
 
 
 
 
E_613   (-0.0124 0.0083) 
E_1481 (0.0121 0.0306) 
S_1104 (-0.0575 -0.0450) 
E_1415 (0.2379 0.4065) 
 

α = 〉0.001, k/Vn=2/4, 
n= 28, test size= 3 
 
 
 
q2=0.6832, pred_r2=0.6716,  
Z score= 4.986, best_rand_q2= 
-0.203, 
pred_r2se=0.9133 
α = 0.001, k/Vn=2/4, 
n= 28, test size= 3 

 
n, number of observations (molecules); Vn, number of descriptors; k, number of nearest neighbors; q2, 
cross-validated r2 (by the leave-one out method); pred_r2, predicted r2 for the external test set; Zscore, the Z 
score calculated by q2 in the randomization test; best_ran_q2, the highest q2 value in the randomization test; 
and R, the statistical significance parameter obtained by the randomization test. 
 

3.  Results and discussion 
 
A data set of 31 compounds of reported series for CRTh2 receptor antagonist activity was 

used for the present QSAR study6 (Table 3). The QSAR studies of the 2,4-disubstituted-phenoxy 
acetic acid derivatives series resulted in several QSAR equations. The three best equations by all 
three kNN method are (with statistical parameter) given in table 4. 

The calculated and predicted  activities of the training and test set of compounds by 
models generated through all three methods are shown in table 5 and table 6. 

 
Table 5 - Comparison of predicted activities of various kNN-MFA  

   method for training set of compounds 
 
Com. Actual 

Activity* 
Predicted Activity by 
kNN-MFA with SW 

Predicted Activity by 
kNN-MFA with SA 

Predicted Activity by 
kNN-MFA with GA 

 
1 
 
2 
 
3 
 
4 
 
5 
 
6 
 
7 
 
8 
 
9 
 

10 
 

 
4.268 

 
3.593 

 
3.255 

 
4.050 

 
2.801 

 
2.436 

 
1.892 

 
1.950 

 
3.906 

 
3.292 

 

 
3.671 

 
3.599 

 
2.618 

 
3.780 

 
3.274 

 
1.921 

 
2.193 

 
2.164 

 
3.172 

 
3.750 

 

 
3.873 

 
3.634 

 
3.599 

 
3.273 

 
4.001 

 
1.921 

 
2.184 

 
2.153 

 
3.274 

 
3.558 

 

 
3.218 

 
3.566 

 
3.594 

 
3.752 

 
3.778 

 
1.921 

 
3.588 

 
2.674 

 
3.273 

 
3.571 
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11 
 

12 
 

13 
 

14 
 

15 
 

16 
 

17 
 

18 
 

19 
 

20 
 

21 
 

22 
 

23 
 

24 
 

25 
 

26 
 

27 
 

28 

4.275 
 

3.407 
 

4.214 
 

3.052 
 

3.293 
 

3.966 
 

4.823 
 

3.821 
 

4.327 
 

4.376 
 

4.431 
 

4.886 
 

3.782 
 

5.443 
 

5.823 
 

5.853 
 

5.468 
 

5.726 

4.630 
 

4.245 
 

3.841 
 

3.599 
 

3.653 
 

4.044 
 

5.456 
 

4.116 
 

4.322 
 

4.075 
 

4.634 
 

4.404 
 

3.893 
 

5.146 
 

5.649 
 

5.646 
 

5.633 
 

5.064 

3.880 
 

1.922 
 

4.034 
 

3.274 
 

3.583 
 

4.043 
 

5.456 
 

2.896 
 

5.378 
 

5.005 
 

4.529 
 

5.792 
 

4.118 
 

5.336 
 

5.117 
 

5.265 
 

5.124 
 

5.635 

4.133 
 

2.899 
 

4.010 
 

3.273 
 

2.880 
 

3.512 
 

5.650 
 

3.823 
 

4.614 
 

4.161 
 

4.555 
 

4.380 
 

3.522 
 

4.961 
 

5.263 
 

5.094 
 

5.318 
 

5.160 
 

Table  6- Comparison of predicted activities of various kNN-MFA  method for test set of compounds 
 

Com. Actual 
Activity* 

Predicted Activity 
by kNN-MFA with 

SW 

Predicted Activity 
by kNN-MFA with 

SA 

Predicted Activity 
by kNN-MFA with 

GA 

9 
 

2.705 
 

2.887 
 

3.015 
 

3.332 
 

19 
 

5.823 
 

5.661 
 

5.143 
 

5.135 
 

    20 4.318 5.133 5.129 3.350 

 * = Observed activity in mmol 
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It is known that the CoMFA method provides significant value in terms of a new molecule 
design, when contours of the PLS coefficients are visualized for the set of molecules. Similarly, 
the kNN-MFA models provide direction for the design of new molecules in a rather convenient 
way. The points which contribute to the SA kNN-MFA models in all three data sets are displayed 
in Figures 1-3. The range of property values for the chosen points may aid in the design of new 
potent molecules (Figures 1-3). The range is based on the variation of the field values at the 
chosen points using the most active molecule and its nearest neighbor set. 
 
 

 
Fig. 1 - Distribution of chosen points in the SW kNN-MFA method 

 
 

Fig. 2 - Distribution of chosen points in the SA kNN-MFA method 
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Fig. 3 -  Distribution of chosen points in the GA kNN-MFA method. 
 

 
The q2, pred_r2, Vn and k value of kNN-MFA with SW, SA & GA were (0.8392, 0.7059, 

2/2 ) (0.6725, 0.6716, 2/4 ) and (0.6832, 0.6716, 2/4 ) although there are no common descriptors 
among these three methods, SW kNN-MFA method have better q2 (0.8392) and pred_r2 (0.7059) 
than other two methods, model validation  correctly predicts activity 83.9% and 70.5% for the 
training and test set respectively. It uses 2 steric descriptors with 2 k nearest neighbor to evaluate 
activity of new molecule, So model generated by SA kNN-MFA are best model. 

S_1580, S_394 in SW kNN-MFA, S_21,S_183 in SA kNN-MFA and S_1104 are steric 
field descriptors similarly E_1244, E_254 in SA kNN-MFA and E_613, E_1481, E_1415 are 
electrostatic field descriptors. 

Negative value in electrostatic field descriptors indicates that negative electronic potential 
is required to increase activity and more electronegative substituents group is preferred in that 
position, positive range indicates that group that imparting positive electrostatic potential is 
favorable for activity so less electronegative group is preferred in that region. 

Negative range in steric descriptors indicates that negative steric potential is favorable for  
activity and less bulky substituents group is preferred in that region, Positive value of steric 
descriptors reveals that positive steric  potential is favorable for increase in activity and more 
bulky group is preferred in that region. 

 
 
4. Conclusions 
 
The proposed models, due to the high internal and external predictive ability, can therefore act 

as a useful aid to the costly and time consuming experiments for determining the molar concentration 
of a compound required to achieve better CRTh2 antagonist activity. Our results lead to the conclusion 
that the CRTh2 antagonist activities of 2,4-disubstituted-phenoxy acetic acid derivatives can be 
increased if substituents that bring about changes in the molecule as mentioned above are attached to 
it. 
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