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In this work we report on the polymerization via direct laser writing using ultrashort laser 
pulses of a hybrid methacrylate based on silane derivatives. For the preparation of 2D and 
3D structures the organic-inorganic material was laser processed alone or in a monomer 
mixture. The chemical structure, elemental composition of the monomers and of the 
processed polymeric structures, as well as the morphology of the fabricated systems were 
investigated, with the aim to develop novel materials for further application in tissue 
engineering and biomedical implants. 
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1. Introduction 
 
In the last years, the synthesis of hybrid organic-inorganic nanomaterials has proved to be 

a topic with a very promising future. Organically modified silicates, known as ormosils are hybrid 
monomers with strong covalent bonding between the organic group and the inorganic one. The 
materials with tailored properties lead to a tremendous research activity exploring the development 
of novel biomaterials as scaffolds in tissue engineering and regenerative medicine [1, 2], coatings 
with a wide range of pharmaceutical [3], biomedical implants [4, 5] and sensor applications [6-8]. 
The ormosils can be used as waveguides and photonic components [9-11] as well as protective 
coatings [7, 12] due to their good optical and mechanical properties as well as thermal stability 
[13]. 

In order to successfully use an ormosil for tissue engineering, there are few requirements 
to be fulfilled. The material has to be biocompatible, to have a porous structure and it has to be 
easily structured [14]. The artificial designed scaffold has to simulate the natural cellular 
environment of the living body [15]. The geometry and topography of the polymeric matrix have a 
significant influence in the cells orientation, alignment and the first steps for tissue formation [1, 
16]. If for a bidimensional structure the typical cells growth model is in a single layer, for a tissue, 
with 3D configuration and different cell types present, a 3D system is needed [9]. The scaffold 
configuration has to vary with respect to the cells involved; for example, the pore size required for 
a fibroblast cell is about 10 µm, which is 10 times lower than for an osteocyte, as mentioned in 
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Ref. 17 and Ref. 6 heir in. For this reason the method of producing the scaffold should allow easily 
setting and configuration. 

Laser based techniques have proved to be an attractive alternative to the conventional 
methods (e.g. gas foaming [17]) due to the number of advantages it has to offer over the 
conventional processes, such as being a clean technique that can generate structures with well 
controlled architecture; the laser is an external energy source needed for polymerization and by 
this way no contamination is introduced. Selective laser sintering uses a high power laser (e.g. a 
CO2) to produce solid 3D structures starting from powder materials [18]. The main disadvantage 
of laser sintering is that most of the materials suitable for sintering are not biocompatible. 
Stereolithography uses UV lasers for the polymerization of photosensitive materials. 
Polymerization takes place up to a few micrometers below the surface [19]. In-plane scanning of 
the sample produces 2D structures, while 3D scaffolds can be built by multiple scanning, layer by 
layer, each time on fresh photosensitive material, the layers attaching on the previous ones. 

A very appealing method for producing 3D biocompatible scaffolds with high resolution 
(under the diffraction limit) [21] is direct laser write (DLW) with ultrashort pulses [9, 22]. By 
focusing the beam of an infrared laser with ultrashort pulses into the volume of a photosensitive 
material, the photopolymerization process takes place just in the center of the focus spot. The 
dominant mechanism involved in the polymerization by femtoseconds is avalanche absorption 
which is seeded by multi photon absorption process [22]. By moving the laser beam inside the 
volume of the transparent material, the photopolymerization is initiated by two photon absorption 
and 3D structures can be designed and obtained. Hybrid materials photo processed by femtosecond 
laser pulses can find other applications in drug delivery [23-25] as well as implants for 
biomedicine and photonic crystals [15, 23, 26, 27]. 

In this study we investigated the chemical properties and the morphology of structures 
obtained by direct laser writing (DLW) that allow producing scaffolds with micrometer resolution 
for applications in tissue engineering. Previously, the biocompatibility tests performed evidenced 
that the hybrid monomer is not cytotoxic [13]. 

 
2. Materials and methods 
 
2.1 Materials 
 
The chemical structure of the triethoxysilane based methacrylate is presented in Fig. 1.a. 

N,N’-(methacryloyloxyethyl triehtoxy silyl propyl carbamoyl-oxyhexyl)-urea (SIM-3) is the 
monomer used in our study for laser photostructuring experiments, by femtosecond laser pulses. 
This monomer has been polymerized alone or by combining it with a co-monomer consisting in a 
dimethacrylate oligomer with urethane groups in its structure (Fig 1.b). 
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Fig. 1. The chemical structure of (a) N,N’-(methacryloyloxyethyl triehtoxy silyl propyl 
carbamoyloxyhexyl)-ureea (SIM-3) and (b) oligourethane dimethacrylate (UDA) 

 
 

2.2 Scaffold Preparation 
 
Solutions of monomer and photoinitiator in tetrahydrofuran were prepared and deposited 

on glass substrate (by drop casting method) as described in [28, 29]. For the experiments where the 
urethane dimethacrylate was used as co-monomer, the ratio SIM-3:UDA was 3:1. Commercial 
Irgacure 369 was selected as efficient photoinitiator. A Direct Laser Writing workstation coupled 
with an amplified femtosecond laser Clark CPA-2010 was the setup for the polymerization 



825 
 

experiments. The Ti:Sapphire laser emits ultrashort pulses of 200 fs at wavelength of 775 nm. The 
repetition rate was 2 kHz. 

The sample, consisting in the monomeric gel distributed in a thin and uniform layer on a 
glass substrate, was maintained fixed. The surface was scanned by a laser scanning head with 
galvanic mirrors. The laser beam was focused on the sample by a f-theta lens of 100 mm focal 
distance, providing a focal spot diameter of 35 m.   Areas up to 5x5 mm2 were scanned and 
photo-processed by ultrashort laser pulses and structures of lines and grids with different spacing 
have been photopolymerized. The laser processing parameters were optimized for the best results 
in terms of structures uniformity, smoothness of the structures, defects free. Therefore, the laser 
power was in the range 5-10 mW, leading to a fluence of about 0.2-0.5 J/cm2 and the laser beam 
scanning velocity was in the range 1-3 mm/s. 

 
2.3 Analysis 
 
The structure and purity of the monomers was checked by 1H NMR spectroscopy and 

Fourier Transform Infrared spectroscopy. The temperature stability of the hybrid polymers was 
investigated by thermal analysis (Thermogravimetric methods (TGA/DTG)) with a TA Q500 
derivatograph, by heating the sample (2 mg) with 10oC/ minute up to 800°C, in N2 atmosphere (90 
ml/ minute gas flow). The thermal analyses were performed on samples polymerized with a 
nanosecond Nd: YAG laser, working at 266 nm, and 10 Hz repetition rate. The laser energy and 
laser spot were 15 mJ and 0.5 cm2 respectively. 

The elemental composition of the structures obtained by DLW with femtosecond laser 
pulses was determined by X-ray photoelectron spectroscopy (XPS). The XPS spectra were 
recorded on the Thermo Scientific KAlpha equipment, fully integrated, with an aluminum anode 
monochromatic source. The surface morphology of the polymerized structures was investigated by 
optical microscopy, scanning electron microscopy (SEM) and atomic force microscopy (AFM). 

L929 mouse fibroblasts cells were grown on the photo structured scaffolds in order to 
study the cells attachment and proliferation. Cells were grown in medium MEM (Minimal 
Essential Medium), produced by Biochrom, 1% penicilin-streptomicin, L-glutamine and 10% heat 
inactivated fetal bovine serum and they were kept in an incubator at 37°C, 5% CO2. 

We used phalloidin to mark actin cytoskeleton and hoecst to identify the nuclei. For cells 
observation an Olympus microscope IX 71 was used. The pictures were taken using a Moticam 
2300, 3 Mp camera attached to the microscope (Motic Images Plus 2.0 software). 

 
 
3. Results and discussions 
 
Fig. 2 presents the 1H NMR spectrum of N,N’-(methacryloyloxyethyl triehtoxy silyl 

propyl carbamoyl-oxyhexyl)-urea (SIM-3), in which can be identified the characteristic signals for 
olefinic protons in trans/cis configuration (6.1 and 5.6 ppm), urea protons (5.1 and 4.9 ppm), 
methylene protons of ester-urethane (4.2 ppm) and ester functions (4.0 ppm), protons of siloxane 
(3.8 and 3.7 ppm), or protons bonded to urea (3.5 ppm) and urethane (3.15 ppm) groups. The other 
signals belong to methyl protons of methacrylate (1.8 ppm), methyl protons of hexyl and propyl 
(1.2-1.6 ppm), and CH2–Si protons (0.6 ppm). The FTIR spectrum of SIM-3 (Fig. 3) shows the 
specific absorption bands of the urea and urethane NH group (3357 cm-1), C-H group (2973, 2927 
cm-1), carbonyl group (1720 cm-1), methacrylate function (1639 cm-1), amida II (1566 cm-1), and 
Si-O moiety (1079 cm-1). 
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Fig. 2. 1H NMR spectrum of N,N’-(methacryloyloxyethyl triehtoxy silyl propyl  
carbamoyloxyhexyl)-urea (SIM-3) in CDCl3 
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Fig. 3. FTIR spectrum of N,N’-(methacryloyloxyethyl triehtoxy silyl propyl  
carbamoyloxyhexyl)-urea (SIM-3) 

 
 

SIM-3 was tested alone or in combination with an urethane dimethacrylate (UDA) that 
contains the poly(ethylene oxide) soft segment as spacer between the photopolymerizable groups. 
Fig. 4 presents the 1H NMR spectrum for UDA. The signals at 0.88-1.70 ppm correspond to the 
isophorone cycle protons and those at 1.87 ppm are attributed to methyl protons bonded to the 
polymerizing groups. Methylene protons of urethane groups are visible by 3.3 ppm signal, 
methylene protons of poly(ethylene oxide) by 3.55 ppm, methylene protons of urethane groups by 
3.6 ppm and methylene protons of ester group by 4.20 ppm signal. The other signals belong to 
unsaturated acrylate protons (5.65 and 6.03 ppm) and urethane protons (7.19 and 7.80 ppm). 
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(c)                                                                 (d) 

Fig. 10. Fibroblast cells grown on a polymeric grid with 100 µm distance between lines.  
Marked actin filaments (a, c) and nuclei (b, d) (4 days) for two different magnifications  

 
 

By using phalloidin staining, it can be observed (Fig 10 (a, c)), that the cells are stretched 
on the grid surface, establishing intercellular connections with a tendency to cover the scaffold, the 
chemistry of the organic-inorganic hybrid materials and the surface topography being proper for 
the cells growth and proliferation. 

 
 
4. Conclusions 
 
2D and 3D polymeric structures were obtained by direct laser writing with femtosecond 

pulses, for SIM-3 alone or in combination with the urethane diacrylate oligomer (UDA). Large 
areas can be fabricated with a time effective technique. The biological tests proved the 
biocompatible character of the polymers, with prospects for bio applications.  
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