THE THIRD GEOMETRIC-ARITHMETIC INDEX OF TUC₄C₈(S) NANOTORUS

JIANXIU HAO*

Institute of Mathematics, Physics and Information Sciences,
Zhejiang Normal University, P. O. Box: 321004,
Jinhua, Zhejiang, P. R. China

The third geometric-arithmetic index is an important topological index in mathematical chemistry. In this paper we study the third geometric-arithmetic index of TUC₄C₈(S) nanotorus.

(Received September 8, 2012; September 28, 2012)

Keywords: The third geometric-arithmetic index, TUC₄C₈(S), nanotori.

1. Introduction

The third geometric-arithmetic index is introduced by B. Zhou, I. Gutman, B. Furtula, Z. Du[1, 2]. It is defined as follows [1, 2]: for a simple connected graph G,

$$GA_3(G) = \sum_{u,v \in E(G)} \frac{\sqrt{m_u m_v}}{0.5(m_u + m_v)}$$

where \(m_u\) is defined as follows: let \(x\) be a vertex and \(uv\) be an edge of graph G, the distance between \(x\) and \(uv\) is defined as follows: \(d(x, uv) = \min\{d(x, u), d(x, v)\}\), where \(d(x, u)\) is the length of the shortest path that connects \(x\) and \(u\) in \(G\). For \(uv \in E(G)\), let \(m_u = |\{ f \in E(G): d(u, f) < d(v, f) \}|\). \(GA_3\) index is a possible tool for QSAR/QSPR researches and it gives somewhat better predictions than those of \(GA_2\) does [1, 2].

In this paper we study the third geometric-arithmetic index of TUC₄C₈(S) nanotorus. For the figure of TUC₄C₈(S) nanotorus, see [3].

2. Main result

Theorem 2.1. Let \(G\) be TUC₄C₈(S)[p, q] nanotorus, where \(p \geq 2, q \geq 2\), we have

$$GA_3(G) = 12pq.$$

Proof. In the following, let \(q \geq 3\). Firstly, we label the levels of \(G\) from bottom to top with 1, 2, ..., 2q respectively. Secondly, we label the vertices in level \(i\) with \(x_{i1}, x_{i2}, ..., x_{i4p}\), where \(i = 1, 2, ..., 2q\). Clearly, the edge number of \(G\) is \(12pq\). By the symmetry of \(p\) and \(q\), in the following let \(p \geq q\).

*Corresponding author: sx35@zjnu.cn
Case 1. $e = x_14 x_15$.

Clearly, the edges in A are equidistant from x_{14} and x_{15}, where

\[A = \{ x_{14} x_{15}, x_{24} x_{25}, x_{34} x_{35}, \ldots, x_{2q,4} x_{2q,5}; \\
 x_{1,2p+4} x_{1,2p+5}, x_{2,2p+4} x_{2,2p+5}, x_{3,2p+4} x_{3,2p+5}, \ldots, x_{2q,2p+4} x_{2q,2p+5} \}. \]

When we delete the edges in A, we obtain two graphs A_1 and A_2 from G. Without loss of generality, let $x_{14} \in V(A_1)$ and $x_{15} \in V(A_2)$. Obviously, $m_{x_{14}} = |E(A_1)|$, $m_{x_{15}} = |E(A_2)|$. Thus, we have

\[m_{x_{14}} = m_{x_{15}} = 6pq - 2q. \]

Hence, we have

\[\frac{\sqrt{m_{x_{14}} m_{x_{15}}}}{0.5(m_{x_{14}} + m_{x_{15}})} = 1. \]

Case 2. $e = x_{12} x_{13}$.

Clearly, the edges in B are equidistant from x_{12} and x_{13}, where

\[B = \{ x_{12} x_{13}, x_{22} x_{23}, x_{32} x_{33}, \ldots, x_{2q,2} x_{2q,3}; \\
 x_{1,2p+2} x_{1,2p+3}, x_{2,2p+2} x_{2,2p+3}, x_{3,2p+2} x_{3,2p+3}, \ldots, x_{2q,2p+2} x_{2q,2p+3} \}. \]

When we delete the edges in B, we obtain two graphs B_1 and B_2 from G. Without loss of generality, let $x_{12} \in V(B_1)$ and $x_{13} \in V(B_2)$. Obviously, $m_{x_{12}} = |E(B_1)|$, $m_{x_{13}} = |E(B_2)|$. Thus, we have

\[m_{x_{12}} = m_{x_{13}} = 6pq - 2q. \]

Hence, we have

\[\frac{\sqrt{m_{x_{12}} m_{x_{13}}}}{0.5(m_{x_{12}} + m_{x_{13}})} = 1. \]

Case 3. $e = x_{22} x_{32}$.

Subcase 3.1. q is odd.

Clearly, the edges in C are equidistant from x_{22} and x_{32}, where

\[C = \{ x_{22} x_{32}, x_{23} x_{33}, x_{26} x_{36}, x_{27} x_{37}, \ldots, x_{2,4p-2} x_{3,4p-2}, x_{2,4p-1} x_{3,4p-1}; \\
 x_{q,2,1} x_{q,3,1}, x_{q,2,4} x_{q,3,4}, x_{q,2,5} x_{q,3,5}, x_{q,2,8} x_{q,3,8}, \ldots, x_{q,2,4p-3} x_{q,3,4p-3}, x_{q,2,4p} x_{q,3,4p} \}. \]

When we delete the edges in C, we obtain two graphs C_1 and C_2 from G. Without loss of generality, let $x_{22} \in V(C_1)$ and $x_{32} \in V(C_2)$. Obviously, $m_{x_{22}} = |E(C_1)|$, $m_{x_{32}} = |E(C_2)|$. Thus, we have

\[m_{x_{22}} = m_{x_{32}} = 6pq - 2p. \]

Hence, we have

\[\frac{\sqrt{m_{x_{22}} m_{x_{32}}}}{0.5(m_{x_{22}} + m_{x_{32}})} = 1. \]

Subcase 3.2. q is even.
Clearly, the edges in D are equidistant from x_{22} and x_{32}, where
\[D = \{ x_{22} x_{32}, x_{23} x_{33}, x_{26} x_{36}, x_{27} x_{37}, \ldots, x_{2,4p-2} x_{3,4p-2}, x_{2,4p-1} x_{3,4p-1}; \]
\[x_{q+1,2} x_{q+2,2}, x_{q+1,3} x_{q+2,3}, x_{q+1,6} x_{q+2,6}, x_{q+1,7} x_{q+2,7}, \ldots, x_{q+1,4p-2} x_{q+2,4p-2}, x_{q+1,4p-1} x_{q+2,4p-1} \} . \]

When we delete the edges in D, we obtain two graphs D_1 and D_2 from G. Without loss of
genularity, let $x_{22} \in V(D_1)$ and $x_{32} \in V(D_2)$. Obviously, $m_{x_{22}} = |E(D_1)|$, $m_{x_{32}} = |E(D_2)|$. Thus, we have

\[m_{x_{22}} = m_{x_{32}} = 6pq - 2p. \]

Hence, we have

\[\sqrt{m_{x_{22}} m_{x_{32}}} = 0.5(m_{x_{22}} + m_{x_{32}}) = 1. \]

Case 4. $e = x_{11} x_{21}$.

Subcase 4.1. q is odd.

Clearly, the edges in F are equidistant from x_{11} and x_{21}, where
\[F = \{ x_{11} x_{21}, x_{14} x_{24}, x_{15} x_{25}, x_{18} x_{28}, \ldots, x_{1,4p-3} x_{2,4p-3}, x_{1,4p} x_{2,4p}; \]
\[x_{q+1,2} x_{q+2,2}, x_{q+1,4} x_{q+2,4}, x_{q+1,6} x_{q+2,6}, x_{q+1,7} x_{q+2,7}, \ldots, x_{q+1,4p-2} x_{q+2,4p-2}, x_{q+1,4p-1} x_{q+2,4p-1} \} . \]

When we delete the edges in F, we obtain two graphs F_1 and F_2 from G. Without loss of
genularity, let $x_{11} \in V(F_1)$ and $x_{21} \in V(F_2)$. Obviously, $m_{x_{11}} = |E(F_1)|$, $m_{x_{21}} = |E(F_2)|$. Thus, we have

\[m_{x_{11}} = m_{x_{21}} = 6pq - 2p. \]

Hence, we have

\[\sqrt{m_{x_{11}} m_{x_{21}}} = 0.5(m_{x_{11}} + m_{x_{21}}) = 1. \]

Subcase 4.2. q is even.

Clearly, the edges in H are equidistant from x_{11} and x_{21}, where
\[H = \{ x_{11} x_{21}, x_{14} x_{24}, x_{15} x_{25}, x_{18} x_{28}, \ldots, x_{1,4p-3} x_{2,4p-3}, x_{1,4p} x_{2,4p}; \]
\[x_{q+1,1} x_{q+2,1}, x_{q+1,4} x_{q+2,4}, x_{q+1,5} x_{q+2,5}, x_{q+1,6} x_{q+2,6}, \ldots, x_{q+1,4p-3} x_{q+2,4p-3}, x_{q+1,4p} x_{q+2,4p} \} . \]

When we delete the edges in H, we obtain two graphs H_1 and H_2 from G. Without loss of
genularity, let $x_{11} \in V(H_1)$ and $x_{21} \in V(H_2)$. Obviously, $m_{x_{11}} = |E(H_1)|$, $m_{x_{21}} = |E(H_2)|$. Thus, we have

\[m_{x_{11}} = m_{x_{21}} = 6pq - 2p. \]

Hence, we have

\[\sqrt{m_{x_{11}} m_{x_{21}}} = 0.5(m_{x_{11}} + m_{x_{21}}) = 1. \]

Case 5. $e = x_{11} x_{12}$.

Clearly, the edges in I are equidistant from x_{11} and x_{12}, where
\[I = \{ x_{11}, x_{12}, x_{23}, x_{24}, x_{35}, x_{36}, \ldots, x_{q,2q-1}, x_{q,2q}; \\
 x_{q+1,1}, x_{q+1,2}, x_{q+1,3}, x_{q+1,4}, x_{q+1,5}, x_{q+1,6}, \ldots, x_{q+1,2p-1}, x_{q+1,2p} ; \\
 x_{1,2p+1}, x_{1,2p+2}, x_{2,2p+1}, x_{2,2p+2}, x_{3,2p+1}, x_{3,2p+2}, \ldots, x_{2q,2p+1}, x_{2q,2p+2} ; \\
 x_{q+1,4p-2q+3}, x_{q+1,4p-2q+4}, x_{q+1,4p-2q+5}, x_{q+1,4p-2q+6}, \ldots, x_{q+1,4p-3}, x_{q+1,4p-2}, x_{q+1,4p-1}, x_{q+1,4p}; \\
 x_{q+2,4p-2q+3}, x_{q+2,4p-2q+4}, x_{q+3,4p-2q+5}, x_{q+3,4p-2q+6}, \ldots, x_{2q-1,4p-3}, x_{2q-1,4p-2}, x_{2q,4p-1}, x_{2q,4p} \}. \]

When we delete the edges in \(I \), we obtain two graphs \(I_1 \) and \(I_2 \) from \(G \). Without loss of generality, let \(x_{11} \in V(I_1) \) and \(x_{12} \in V(I_2) \). Obviously, \(m_{\bar{1}_{1}} = |E(I_1)|, \quad m_{\bar{1}_{2}} = |E(I_2)|. \) Thus, we have

\[m_{\bar{1}_{1}} = m_{\bar{1}_{2}} = 6pq - 3q + 1. \]

Hence, we have

\[\sqrt{\frac{m_{\bar{1}_{1}} m_{\bar{1}_{2}}}{0.5(m_{\bar{1}_{1}} + m_{\bar{1}_{2}})}} = 1. \]

By the definition of \(GA_3(G) \), when \(q \geq 3 \), the theorem follows. When \(q = 2 \), we can prove the theorem similarly.

Remark: let \(p_1 = 2, q_1 = 6, p_2 = 3, q_2 = 4 \), we have \(GA_3(TUC_4C_8(S)[p_1, q_1]) = GA_3(TUC_4C_8(S)[p_2, q_2]) \). Hence, the third geometric-arithmetic index is not good enough.

Acknowledgements

The project supported by the Natural Science Foundation of Department of Education of Zhejiang Province of China (No. 20070441); National Nature Science Foundation of China (No. 10971198), Zhejiang Provincial Natural Science Foundation of China (No. Y6090699); Zhejiang Innovation Project (No. T200905); Innovation Project of Optimization and Control of Network Systems of Zhejiang Normal University; ZSDZZZZXK03; Z6110786.

References

