INFLUENCE OF ZINC ON OPTICAL, ELECTRICAL AND STRUCTURAL PROPERTIES OF (Zn,Cd1-x)S FILMS

D. GHONEIM
Faculty of Science, Physics Department, Al-Azhar University (Girls), Cairo, Egypt

ZnxCd1-xS thin films have been prepared in the entire composition range from CdS to ZnS on glass substrate using the solution growth technique. To deposit good quality films, optimum conditions have been determined. Wide band gap ternary films have many applications in heterojunction solar cells. The optical, electrical resistivity and structure of these films have been studied by optical transmission, conductivity technique, scanning electron microscopy (SEM) and X-Ray diffraction (XRD). It was noticed that the microstructure and lattice parameter and the values of the absorption edge shifted towards the shorter wavelength region and hence the direct band gap energy varied from 2.47 ev for CdS to 3.5 ev for ZnS films. Electrical conductivity studies revealed that the resistivity increased with the increase of Zn content.

(Received May 29, 2010; accepted June 25, 2010)

Keywords: Zn-Cd-S, thin films, electrical, optical properties, SEM, XRD

1. Introduction

Recently there is tremendous interest on the nanoscale semiconductor particles and thin films, due to novel properties generated from quantum confinement effect. The quantum confinement effect changes the physical and chemical properties of the materials [1].

Semiconductor nanoparticles have a number of applications; specifically II-VI compound semiconductors (CdS, ZnS, CdSe). Nanomaterials have an immense potential in photovoltaic applications [2-4] and as a luminescent materials [5-7]. Among these, CdS is an n-type direct band gap (2.4ev) semiconductor material and is widely used as a window layer for CuInSe2, CdTe based solar cells [8]. Efficiencies of these solar cells are not too high due to the mismatching of lattice parameters and also of band gap. By introducing Zn into CdS materials, ZnxCd1-xS alloy semiconductors is formed and its band gap lies between 2.4 ev (CdS) and 3.6 ev (ZnS) at room temperature in the bulk sate. The band gap energy of the ternary alloy semiconductors could be tuned in the range of binary semiconductors band gap. Hence for a better possibility of increasing the efficiency of a solar cell, tunable band gap material like ZnxCd1-xS or ZnxCd1-xSe are required. ZnxCd1-xSe ternary compound is also potentially useful as a window material for the fabrication of p-n junctions without lattice mismatch in the device based on quaternary materials like CuInxCa1-xSe2[9], CuIn(sxSe1-x)2 etc. [10]. There are a number of reports on the properties of ZnxCd1-xS films [11-18] prepared by various techniques such as molecular beam epitaxy (MBE) [19], chemical vapor deposition [20], spray pyrolysis [21], screen printing [22], sol-get [23,24], simultaneous evaporation [25-27], true liquid crystalline templating [28], and solution grown (SGT) [11-17,29,30]. The (SGT) appears to be a relatively simple and inexpensive method to prepare a homogenous film with controlled composition.

In this paper, ZnxCd1-xS thin films were prepared using (SGT). The optical, electrical, and structural properties of these compounds were investigated as a function of Zn content.

2. Experimental

Thin films of ZnxCd1-xS with varying composition x=0.0,0.1, 0.3, 0.5, 0.7, 0.9, 1) have been grown on glass substrates by growth technique [11-17,29,30]. The different compositions were obtained by controlling the reaction time period, temperature, and pH ~ 11-4 of the solution
In the process of fabrication of the heterojunction the Zn$_x$Cd$_{1-x}$S layer grown on Zn$_x$Cd$_{1-x}$S thin film was deposited onto glass substrates.

The structure of the films were studied by X-ray diffraction patterns using CuK$_\alpha$ line ($\lambda = 1.5405\text{Å}$) and scanning electron microscopy (SEM) which measured the grain size of the films. The optical transmission measurements were carried out at room temperature using a double-beam spectrophotometer (Shimadzu model UV-160A) in the spectral range from 300 to 700 nm. The four-probe test was used to measure the resistivity of Zn$_x$Cd$_{1-x}$S thin films.

3. Results and discussion

3.1. Optical characteristics

Fig. 1 shows spectral behavior transmission T at normal incidence of light in the wavelength (300-700 nm) of the Zn$_x$Cd$_{1-x}$S films. It was noticed that the transmittance decreases as Zn content decreases and the values of the absorption edge shift toward shorter wavelengths with increasing Zn content. These results are in agreement with literature data [18, 22]. The direct allowed optical band gap E_g is estimated from the plots of $(\alpha \lambda^2)$ versus (λ^2). The values of band gap were changed from 2.47 ev (CdS sample) to 3.54 ev (Zn sample). The effective shift in the band gap by 1.07 ev is significant in the present work. The band gap values increased due to the increase x (Zn content) as shown in Table 1. Table 1 also shows the values of energy gap E_g(ev), wavelengths at absorption edge, and error ratio. The dependence of the band gap on the CdS content is shown in Fig. 2. It is clear from the figure that the band gap increases with decreasing Cd content which agrees with Bonn et al., result [31].

![Fig. 1. The optical transmittance T vs wavelength λ of Zn$_x$Cd$_{1-x}$S thin films for different values of x.](image)

<table>
<thead>
<tr>
<th>Composition</th>
<th>λ(nm)</th>
<th>E_g (eV)</th>
<th>Error ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cds</td>
<td>502.7</td>
<td>2.47</td>
<td>0.088</td>
</tr>
<tr>
<td>Zn${0.1}$Cd${0.9}$S</td>
<td>484</td>
<td>2.56</td>
<td>0.01</td>
</tr>
<tr>
<td>Zn${0.3}$Cd${0.7}$S</td>
<td>450</td>
<td>2.76</td>
<td>0.129</td>
</tr>
<tr>
<td>Zn${0.5}$Cd${0.5}$S</td>
<td>433.25</td>
<td>2.86</td>
<td>0.07</td>
</tr>
<tr>
<td>Zn${0.7}$Cd${0.3}$S</td>
<td>383</td>
<td>3.24</td>
<td>0.097</td>
</tr>
<tr>
<td>Zn${0.9}$Cd${0.1}$S</td>
<td>353.3</td>
<td>3.51</td>
<td>0.12</td>
</tr>
<tr>
<td>ZnS</td>
<td>343.3</td>
<td>3.54</td>
<td>0.064</td>
</tr>
</tbody>
</table>
The variation of E_g with x can be calculated from the following quadratic equation:

$$E_g(x) = E_g(0) + 0.7x + 0.5x^2$$ \hspace{1cm} (1)

Where $E_g(0)$ is the band gap energy of CdS. The variation of E_g with x is linear as shown in Fig. 3 and in well agreement with results [11]. Kwok et al. [16] reported similar empirical formula for $\text{Zn}_x\text{Cd}_{1-x}\text{S}$ microcrystalline material.

3.2. Electrical conductivity

Table (2) illustrates the values of resistivity ($\rho \Omega \text{cm}$) by using four-probe test, and thicknesses of $\text{Zn}_x\text{Cd}_{1-x}\text{S}$ films which is determined by using weight difference. From Table (2) we observed that the thicknesses of the films decreases as Zn content increases, while the resistivity increases as Cd content decreases. Fig. 4 and 5 show the relation between thicknesses, log resistivity and ZnS content. The experimental data is in agreement with [11]. N-Sugama et al. [32], K. Park et al. [22] and G. Padam et al. [11] explained that the increase in resistivity and small thicknesses of these films with increasing Zn concentration is attributed to the film nature (porosity, texture) in addition to the decrease in the grain size of the films which were prepared by solution growth technique.
Table 2. Comparison of resistivity ρ, log ρ and thicknesses of Zn$_x$Cd$_{1-x}$S films.

<table>
<thead>
<tr>
<th>Composition</th>
<th>t(Å)</th>
<th>Resistivity ρ (Ω cm)</th>
<th>log ρ (Ω cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cds</td>
<td>3209.39±1163.23</td>
<td>3.0858x109</td>
<td>9.489±0.4805</td>
</tr>
<tr>
<td>Zn${0.1}$Cd${0.9}$S</td>
<td>3553.25±166.524</td>
<td>5.1959x109</td>
<td>9.716±0.9359</td>
</tr>
<tr>
<td>Zn${0.2}$Cd${0.8}$S</td>
<td>2974.57±537.61</td>
<td>1.5409x1011</td>
<td>11.1878±1.261</td>
</tr>
<tr>
<td>Zn${0.3}$Cd${0.7}$S</td>
<td>1969.2±13.01</td>
<td>4.843x1010</td>
<td>10.685±0.563</td>
</tr>
<tr>
<td>Zn${0.5}$Cd${0.5}$S</td>
<td>1798±228.999</td>
<td>8.87x1013</td>
<td>13.948±0.555</td>
</tr>
<tr>
<td>Zn${0.9}$Cd${0.1}$S</td>
<td>907.57±387.32</td>
<td>4.466x1014</td>
<td>14.6499±0.224</td>
</tr>
<tr>
<td>ZnS</td>
<td>463.17±211.12</td>
<td>6.1365x1014</td>
<td>14.788±0.358</td>
</tr>
</tbody>
</table>

Fig. 4. The variation of thicknesses of Zn$_x$Cd$_{1-x}$S thin films on x (Zn contents).

Fig. 5. The relation between the logarithmic resistivity ρ and ZnS contents.

3.3. Structure properties

Scanning electron microscopy (SEM) type (TEOL 5400) was used to determine the grain size of Zn$_x$Cd$_{1-x}$S films grown on glass substrate. Fig. 6 shows the surface morphology of uniform deposition of CdS film which shows texture shape with holes [17]. Besides, Fig. 7A through 7G show that the increase in Zn content leads to the disappearance of holes with appearance of some grains which make grains in film to appear as nest to texture film. We noticed that the best homogenous film is at composition x = 0.5.
Fig. 6. SEM micrograph of Cds thin film

Fig. 7. SEM micrograph of Zn$_x$Cd$_{1-x}$S thin films (A) CdS, (B) Zn$_{0.1}$Cd$_{0.9}$S, (C)Zn$_{0.3}$Cd$_{0.7}$S, (D)Zn$_{0.5}$Cd$_{0.5}$S, (E)Zn$_{0.7}$Cd$_{0.3}$S, (F)Zn$_{0.9}$Cd$_{0.1}$S and (G) ZnS
Table (3) shows the values of the grain size of Zn_xCd_{1-x}S films. It’s clear that the largest value of grain size CdS film (~0.50967 μm). Fig. 8 shows the grain size vs. Zn content. The grain size decreases as Zn content increases which agrees with data [11, 32-34].

Table 3. The grain size of the Zn_xCd_{1-x}S thin films.

<table>
<thead>
<tr>
<th>Composition</th>
<th>Cds</th>
<th>Zn_{0.1}Cd_{0.9}S</th>
<th>Zn_{0.3}Cd_{0.7}S</th>
<th>Zn_{0.5}Cd_{0.5}S</th>
<th>Zn_{0.7}Cd_{0.3}S</th>
<th>Zn_{0.9}Cd_{0.1}S</th>
<th>ZnS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grain size</td>
<td>x = x ± (2.776xS/√n) (μm)</td>
<td>0.50967 ± 0.0738</td>
<td>0.47704 ± 0.0299</td>
<td>0.3885 ± 0.0526</td>
<td>0.34733 ± 0.0549</td>
<td>0.26229 ± 0.0517</td>
<td>0.16148 ± 0.01456</td>
</tr>
</tbody>
</table>

Fig. 8. The variation of grain size of Zn_xCd_{1-x}S thin films on x(Zn contents)

Information about the structure of these Zn_xCd_{1-x}S films are obtained from X-ray diffraction patterns (XRD) technique. Fig. 9 shows diffraction of deposited films of composition X=0.0. The diffraction spectra of Fig. 9 were obtained by scanning 2θ in the range of 24-52 and CdS film shows a single diffraction peak at 2θ = 26.5°. This peak could be associated with the (002) reflection of the hexagonal modification or the (111) reflection of the cubic modification [35]. Fig. 10 (a and b) shows the X-ray diffraction (XRD) pattern of Zn_xCd_{1-x}S films for different values of x=0.0, 0.1, 0.3, 0.7 and 0.5.

Fig. 9. X-ray diffraction pattern for CdS
Table (4) gives representative data for the estimated values of lattice constants a, c and the volume of the unit cell V after comparison with ASTM card. The predominant case which appears
from Table (4) shows that the structure exhibits a mixture of both cubic and hexagonal phases [22,33,35].

Table 4. The lattice constant of \(\text{Zn}_x\text{Cd}_{1-x}\text{S} \) thin films.

<table>
<thead>
<tr>
<th>Composition</th>
<th>Hexagonal</th>
<th></th>
<th>Cubic</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(a(\text{\AA}))</td>
<td>(c(\text{\AA}))</td>
<td>(V(\text{\AA}^3))</td>
<td>(a(\text{\AA}))</td>
</tr>
<tr>
<td>Cds</td>
<td>4.077375</td>
<td>6.6851</td>
<td>96.25</td>
<td>5.786496</td>
</tr>
<tr>
<td>(\text{Zn}{0.1}\text{Cd}{0.9}\text{S})</td>
<td>4.074835</td>
<td>6.68254</td>
<td>96.09</td>
<td>5.7691994</td>
</tr>
<tr>
<td>(\text{Zn}{0.3}\text{Cd}{0.7}\text{S})</td>
<td>4.0648</td>
<td>6.6270</td>
<td>94.83</td>
<td>5.75216375</td>
</tr>
<tr>
<td>(\text{Zn}{0.5}\text{Cd}{0.5}\text{S})</td>
<td>4.08497</td>
<td>6.669375</td>
<td>96.38</td>
<td>5.7712196</td>
</tr>
<tr>
<td>(\text{Zn}{0.7}\text{Cd}{0.3}\text{S})</td>
<td>4.0524434</td>
<td>6.514431</td>
<td>92.65</td>
<td>5.696588917</td>
</tr>
<tr>
<td>(\text{Zn}{0.9}\text{Cd}{0.1}\text{S})</td>
<td>4.01206</td>
<td>6.41652</td>
<td>89.45</td>
<td>5.6160</td>
</tr>
<tr>
<td>ZnS</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

The variation of lattice parameter \(a \) and \(c \) with the \(x \) (Zn content) is shown in Fig. 11(a, b, and c) which shows nearly linear plot [11,18]. A gradual decrease in lattice parameter \(a \) and \(c \) are observed as Zn composition \((x) \) increases. This trend is consistent with Vegard’s law and indicates a homogenous alloy structure [18]. Fig. 12 a and b represents the variation of \(V \) unit cell volume of \(\text{Zn}_x\text{Cd}_{1-x}\text{S} \) with composition \(x \) which is linear, and decreases as Zn content increases.
4. Conclusion

Zn$_x$Cd$_{1-x}$S grown on glass substrates by (SGT) shows that the grown film is composed of mixture from both cubic and hexagonal structures. The present work reveals that, of the seven films, the most homogenous films are those of Zn$_{0.5}$Cd$_{0.5}$S films which is attributed to the graying nature of this film over the other films and the crystalline dimension of them film nears from the crystalline dimension of CdS film. X-ray diffraction study showed that the increase of Zn content in the film lead to all the peaks shifted towards the higher diffracting angles. The lattice constant also gradually decreased as Zn content increased. Optical study revealed that the
transmittance increases as Zn content increases. The strong absorption edge also shifted towards the lower wavelength region and hence the band gap of the films increases as Zn content increases.

However, CdS film is considered as the best of all these films because of its higher conductivity and because the band gap is widely used as a window material in heterojunction solar cells.

References