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In this paper, we have presented the structural, elastic, mechanical, and electronic 
properties of the transition metal chalcogenide perovskite SnZrS3 under different pressures 
by using first-principles method. Our calculated lattice parameters at ambient pressure are 
in good agreement with the experimental and previous theoretical results. The elastic 
constants were evaluated numerically for orthorhombic SnZrS3 using the strain-stress 
approach. Orthorhombic SnZrS3 shows a strong anisotropic behavior of the elastic and 
structural properties. According to the calculations of the electronic properties, we find the 
states near the valence band top are derived from S 3p, Zr 4d, Sn 5p, and Sn 5s orbitals, 
and the lowest conduction band is composed of Zr 4d, S 3p, and Sn 5p orbitals. As the 
pressure increases, the conduction and valence band shift to lower and higher energies, 
respectively. These results indicated that lattice constants and band gap decrease with the 
increase of pressure. 
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1. Introduction 
 
SnZrS3 belongs to an important families of transition metal chalcogenide perovskites that 

have promising applications in optoelectronic industry1-2. Recently, transition metal chalcogenide 
perovskite sulfides and selenides have been successfully synthesized3. Its unique advantages such 
as high absorption coefficient values, small effective masses, and high luminescence efficiency, 
indicating their suitability for electronic, optical, and energy conversion technologies4-6. Moreover, 
with respect to applications, it is urgent to elucidate the structure-property relationship for 
expanding the recognition and continuing research. 

Under ambient conditions, the structure of SnZrS3 is found to be crystallized in an 
orthorhombic structure with space group 62/Pnma7. The structure is the type of NH4CdC13 with 
edge-sharing double columns zirconium octahedral structure. It is generally accepted that the 
structural, elastic, mechanical, and electronic properties of materials are closely associated with 
their crystal structures, which can be regulated by pressure8-9. N. Ben Bellil et al have undertaken 
fundamental research on the structural, optoelectronic, and thermodynamics properties of the 
SnZrS3 compound10. They showed that the SnZrS3 conduction band minima are dominated by Zr 
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d-states, while chalcogen p-states with contributions from Sn s-states occupy the valence band 
maxima. Other studies also confirm that SnMS3 and SnMSe3 (M = Zr, Hf) materials show 
symmetrical doping potential as p- and n-type semiconductors which results in their suitability for 
homojunction photovoltaic applications11-12. In spite of some studies on the SnZrS3, while there are 
few reports about the understanding of high-pressure structural details and properties. High 
pressure processed chalcogenide perovskite materials have obtained many exhilarating results such 
as photo-response enhancement, structural stability enhancement, bandgap optimization13-14. 
Pressure, as a clean tuning knob, is widely used because it can successfully modulate the 
electronic structure, bonding patterns and chemical behavior without changing the chemical 
composition15. Success in discovery of novel phenomena and even acquisition of new materials 
were obtained upon compression. In this paper, we present the structural, elastic, mechanical, and 
electronic properties of transition metal chalcogenide perovskite SnZrS3 under different pressures 
using the first-principles method within density functional theory. The information of lattice 
parameters, band structure, total density of states (DOS) and partial density of states (PDOS) under 
pressure are provided. Meanwhile, the values of mechanical parameters, such as the elastic 
constant, and elastic moduli are also calculated. Moreover, the present study provides a good 
comparison between the structural and microstructural properties of chalcogenide perovskite 
materials. The paper is organized as follows: In Section 2, we give a brief description of the 
background of the theory and the details of our calculation method in this work. In Section 3, the 
main results of the structural, elastic, mechanical, and electronic properties of SnZrS3 are 
presented. We draw the conclusions in Section 4. 
 

 
2. Computational details 
 
The calculations were carried out within the frame work of the density functional theory 

(DFT). All DFT calculations are performed using the plane-wave projector-augmented wave (PAW) 
method as implemented in the Vienna Ab-initio Simulation Package (VASP)16-17. To optimize the 
structure the generalized gradient approximation (GGA) functional based on 
Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional is used18-20. The theoretical 
calculation procedures we applied consisted of the following steps: (1) establishing a reasonable 
crystal structure model of the SnZrS3; (2) selecting calculated parameters to optimize the crystal 
structure at ground (0 K, 0 GPa) and high-pressure states, and then comparing the obtained lattice 
constants with the corresponding experimental results; (3) obtaining the final optimized crystal 
structures at the ground and high-pressure states that agree well with the experimental  results by 
constantly adjusting the calculated parameters; (4) calculating the elastic and electronic properties 
of the final optimized crystal structures, and then analyzing the results using appropriate theories. 
The cut-off energy of 550 eV is used throughout the calculations. For all the structures, the total 
energy convergence has been tested within a tolerance level of 0.005 meV/atom28. The 
self-consistent calculations were carried out with a 6×6×10 k-point mesh. The unit cell parameters 
and atomic positions were optimized using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) 
algorithm to find the lowest energy state21. To balance accuracy and speed, the convergence 
criteria for total energy, max force, max tress, and SCF iterations were 5 × 10−6eV/atom, 
0.01eV/Å, 0.02 GPa, and 5 × 10−7eV/atom, respectively. 
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3. Results and discussion 
 
3.1. Structural properties 
In order to know the reliability of our parameters, it is obligatory to calculate the values of 

equilibrium lattice parameters (a, b, and c) and volume of SnZrS3 before studying the pressure 
dependence of mechanical and electronic properties. Lattice parameters and the volume at zero 
pressure are summarized in Table 1, together with experimental7 and other theoretical data for 
comparison10. Based on the GGA functional, the calculated optimized lattice parameters of 
orthorhombic SnZrS3 at zero pressure is a=9.345 Å, b=3.743 Å, c=13.688 Å, and the previously 
obtained experimental values are a=9.188 Å, b=3.717 Å, c=13.839 Å. The comparison shows that 
our results are very close to the available data, and the present values a, b, and c deviate from 
experimental values within 3%, which ensure the reliability of our DFT based investigation. 

 
 

Table. 1. The calculated equilibrium structural parameters of orthorhombic SnZrS3 at ambient pressure.  
The previous experimental results are also listed. 

 
Method         a0 (Å)        b0(Å)          c0(Å)        
V(Å3) 
GGA           9.345       3.743         13.688       478.87 
LDA           9.105       3.669         13.261       443.09 
10Cal.          9.123        3.722         13.790       468.25 
7Expt.         9.183        3.719         13.829       472.63 

 
 
Additionally, in order to evaluate the influence of pressure effect on the structure 

parameters, the equilibrium geometries of orthorhombic SnZrS3 were computed at fixed values of 
applied hydrostatic pressure in the range from 0 to 10 GPa with a step of 1 GPa. The relative 
lattice parameters and relative cell volumes curves as functions of the pressure up to 10 GPa are 
plotted in Fig. 1. It manifests that when the pressure increases, the lattice constants a, b, and c 
decrease, and the volume of the unit cell becomes small. As the pressure increases from 0 to 10 
GPa, the lattice parameter along the a-axis decreases from 9.345 to 8.509 Å. The value of the 
lattice constant b is reduced by 0.692 Å with increase of the external pressure from 0 to 10 GPa, 
while c shows a pressure dependence of ∆𝑐𝑐 = 0.364 Å, respectively. It can be clearly seen that the 
lattice parameter a decrease slightly faster than the other lattice parameters b, and c. From a 
theoretical point of view, as the pressure increases, the interaction of Sn, Zr, and S atoms becomes 
stronger and therefore the bond length among these atoms becomes shorter as a result the lattice 
parameters become smaller with pressure22. Moreover, fitting lattice parameters a, b, and c to 
linear equation dependent on pressure give the following relationships: a(P)=9.302-0.082P; 
b(P)=3.737-0.014P; c(P)=13.579-0.065P. The slope of fitting linear equation of lattice parameters 
a, b and c are -0.082 Å/GPa, -0.014 Å/GPa and -0.065 Å/GPa, respectively. It suggests that the 
lattice parameter a is more sensitive to external pressure than b and c. This indicates that the 
crystal structure of orthorhombic SnZrS3 is continuously compressed with increases in pressure is 
the most compressible along the a-axis and stiffest along the b- and c-axis. This can attribute to the 
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bonding of Sn-S and Zr-S layers along the b-axis and c-axis are stronger than the interlayer 
interactions along the a-axis. Therefore, the lattice parameter along the a-axis is more sensitive to 
pressure than that along the other b-axis and c-axis. The non-uniform pressure dependence of the 
lattice parameters may also mean that the orthorhombic SnZrS3 undergoes anisotropic 
compression. 

 

 
 

Fig. 1. The lattice parameters and cell volume of the orthorhombic SnZrS3 as a function of pressure. 
 
 
Meanwhile, the obtained pressure-unit cell volume (P-V) data set was used to obtain the 

Bulk modulus 𝐵𝐵0 and its pressure derivative 𝐵𝐵0′  by fitting the data to the Birch-Murnaghan 
equation of state (EOS)23 (Fig. 1(b)) along with the experimental data. At 10 GPa, the volume 

compression is 𝑉𝑉 𝑉𝑉0� = 83.15%, (V = 398.16 Å3, 𝑉𝑉0 = 478.87 Å3). The pressure derivative of 

bulk modulus is a parameter of great physical significant in high pressure physics. The obtained 
parameters for the bulk modulus and its first pressure derivative at ambient pressure and 
temperature is 𝐵𝐵0 = 82.32 𝐺𝐺𝐺𝐺𝐺𝐺 GPa and its derivative is 𝐵𝐵0′=4.17, respectively, which are found 
to yield similar results in the pressure range for the theoretical data of 𝐵𝐵0 = 81.412 𝐺𝐺𝐺𝐺𝐺𝐺 and 
𝐵𝐵0′ = 4.139 10. These results are expected to provide useful guidance for the structural 
characterization of this material under high pressure. 

 
3.2. Elastic properties and mechanical stability 
Elastic constants are important mechanical parameters of solid materials, which determine 

the stiffness of a crystal against the external strain24-26. Thus, we calculate the elastic constants to 
study the mechanical properties of chalcogenide perovskite materials under different pressures. 
Secondly, the elastic constant describe the stability of the structure, anisotropy, brittle, and ductile 
behavior. For an orthorhombic structure, SnZrS3 has nine independent elastic constants which are 
summarized in Table 2 with available theoretical data. All the calculated elastic constants agree 
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well with the previous theoretical results. Unfortunately, there are no available experimental data 
to compare with our results. For orthorhombic crystal, the mechanical stability requires the elastic 
constants satisfying the well-known Born stability criteria27: C11+C22-2C12>0; C11+C33-2C13>0; 
C33+C22-2C23>0 and (C11 + C22 + C33 + 2C12 + 2C13 + 2C21) > 0 and Cii>0. It is found that 
our calculated elastic constants can meet the mechanical stability conditions mentioned above, 
which indicates that it is mechanically stable over the pressure range of 0 to 10 GPa.  

 
 

Table. 2. The calculated elastic constants of the orthorhombic SnZrS3 under zero pressure together with 
other theoretical values23. 

 
Pressure  C11   C22   C33   C44   C55    C66    C12    C13    C23             
0 GPa   24.5  91.3   22.9   6.3   9.1   16.2   10.7   10.2   2.9 
2 GPa   50.7  109.1  60.4   16.9  19.9  32.4   26.4   29.1   18.9 
4 GPa   64.2  119.5  83.5   19.7  26.2  40.2   35.2   40.1   25.5 
6 GPa   73.3  127.8  102.2  25.3  29.7  45.8   42.7   48.6   31.8 
8 GPa   82.9  135.7  114.6  26.4  33.6  51.3   45.5   63.3   34.9 
10 GPa  87.3  142.3  135.5  31.6  38.1  57.6   55.6   47.9   39.4 

 
 
The elastic constants of the orthorhombic SnZrS3 under different pressures are shown in 

Fig. 2. It was found that the elastic constants slightly increased with the increasing pressure up to 
10 GPa. However, the elastic constants C44 and C55 have little change with the increasing pressure. 
The elastic constants C11, C22, and C33 are related to the deformation behavior and atomic bonding 
characteristics. The elastic constants C11, C22, and C33 represent the resistance to linear 
compression (direction of the applied force) and the other elastic constants C12, C13, C23, C44, C55, 
and C66 are mainly associated with the elasticity in shape (shear stress). In the entire pressure range 
of our calculation, C11, C22, and C33 were much larger than those of the other elastic constants, 
indicating that deformation resistances along the axial direction were stronger than the 
deformation resistances in shape. Furthermore, it can be seen from Figure. 2 that the relationship 
of the resistance to linear compression C22>C33>C11 for orthorhombic SnZrS3. This indicates the 
weaker resistance to the unidirectional compression compared to the resistance to shear 
deformation. These results are consistent with the results in Figure. 1 showing that with increased 
pressure, the lattice parameter a decreased faster than lattice parameters b and c. To the best of our 
knowledge, there are currently no available experimental data about the elastic constants of 
orthorhombic SnZrS3 for our comparison. We consider the present results of elastic constants as a 
prediction study hoping that our present work will stimulate some more works on these materials. 
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Fig. 2. The elastic constants of the orthorhombic SnZrS3 as functions of pressures. 
 

 
Meanwhile, the bulk modulus (B) reflects the resistance of materials against volume 

change. The shear modulus (G) reflects the resistance of materials against shape change. The 
Young’s modulus (E) measures the stiffness of materials28. To further investigate the influence of 
pressure on the mechanical properties, based on the elastic constants, we calculated the bulk 
modulus, shear modulus, and Young’s modulus of orthorhombic SnZrS3 at different pressures by 
using the Voigt-Reuss-Hill approximations method29-31. On the basis of Voigt approximation, the 
shear modulus (𝐺𝐺𝑉𝑉) and bulk modulus (𝐵𝐵𝑉𝑉) as the function of elastic constants (Cij) are given 

as:  𝐵𝐵𝑉𝑉 = 1
9

[𝐶𝐶11 + 𝐶𝐶12 + 𝐶𝐶33 + 2(𝐶𝐶12 + 𝐶𝐶13 + 𝐶𝐶23)] ; 𝐺𝐺𝐶𝐶 = 1
15

[𝐶𝐶11 + 𝐶𝐶22 + 𝐶𝐶33 + 3(𝐶𝐶44 + 𝐶𝐶55 +

𝐶𝐶66) − (𝐶𝐶12 + 𝐶𝐶13 + 𝐶𝐶23)]. On the basis of Reuss approximation, the shear modulus (G𝑅𝑅) and 
bulk modulus (𝐵𝐵𝑅𝑅) can be defined as follows: 𝐵𝐵𝑅𝑅 = 1 (𝑠𝑠11 + 𝑠𝑠22 + 𝑠𝑠33) + 2(𝑠𝑠12 + 𝑠𝑠13 + 𝑠𝑠23)⁄ ; 
𝐺𝐺𝑅𝑅 = 15 [4(𝑠𝑠11 + 𝑠𝑠22 + 𝑠𝑠33) − 4(𝑠𝑠12 + 𝑠𝑠13 + 𝑠𝑠23) + 3(𝑠𝑠44 + 𝑠𝑠55 + 𝑠𝑠66)].⁄     Since these 
approximations from Voigt and Reuss are upper and lower bounds of elastic constants, respectively. 
Therefore, Hill’s averages are used to predict bulk modulus (B) and shear moduli (G) of the 
polycrystalline aggregates by: B=1/2(𝐵𝐵𝑅𝑅 + 𝐵𝐵𝑉𝑉); G=1/2(𝐺𝐺𝑅𝑅 + 𝐺𝐺𝑉𝑉). The Young’s modulus (E) and 
Poisson’s ratio (δ) are given by the following formulas: E=9BG/(3B+G); δ=(3B-2G)/(2(3B+G)). 
The variation curves of the bulk modulus, Young's modulus and shear modulus with regard to the 
applied pressure are exhibited in Fig. 3. It is found that the bulk modulus B, shear modulus G, and 
Young’s modulus E increase with pressure, suggesting that the orthorhombic SnZrS3 is more 
difficult to compress as pressure increases. As can be seen, the value of bulk modulus B and shear 
modulus E at 10 GPa is 4.86 and 2.92 times greater than that at 0 GPa, respectively. Additionally, 
B is larger than G, indicating the parameter limiting stability of the compound is shear modulus. 
Moreover, the brittle and ductility nature of the orthorhombic SnZrS3 are analyzed according to the 
Pugh’s ratio (𝐵𝐵 𝐺𝐺⁄ ), and Poisson’s ratio (δ). A material with a 𝐵𝐵 𝐺𝐺⁄  ratio value less than 1.75 is 
associated with brittle nature. Otherwise, materials should have ductility28. The ductility and 
brittleness of materials are also separated by the Poisson's ratio with the critical value of 0.26. If 
the Poisson's ratio is less than 0.26, then brittle behavior is predicted; otherwise, materials should 
behave in a ductile manner32-33. From figure. 3 (b), the value of 𝐵𝐵 𝐺𝐺⁄  for orthorhombic SnZrS3 at 
0 GPa is about 0.95. And with the increasing pressure, the value of 𝐵𝐵 𝐺𝐺⁄  becomes more and more 
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greater. In our calculations, when the pressure up to 10 GPa, the value of 𝐵𝐵 𝐺𝐺⁄  is about 2.07, 
implying pressure can improve the ductility of orthorhombic SnZrS3. From figure. 3 (c), our 
results show that the Poisson’s ratios change from 0.131 (P = 0 GPa) to 0.295 (P = 10 GPa) which 
are larger than 0.26. With the increase of pressure, our calculated Poisson’s ratios increases 
gradually. When the pressure is more than 4 GPa, Poisson’s ratios are more than 0.26 and 
orthorhombic SnZrS3 shows ductility, which is consistent with the results of the Pugh’s criterion. 
These results show that orthorhombic SnZrS3 changes from brittleness to ductility with the 
increase of pressure. 

 

 
 

Fig. 3. The pressure dependence of (a) elastic moduli B, G, and E (b) Poisson’s ratio, and (c) the quotient  
of shear to bulk modulus for orthorhombic SnZrS3. 

 
 
3.3. Electronic structure and density of state 
For the equilibrium geometry of the orthorhombic SnZrS3, electronic structures such as 

band structure, the total density of states (DOS) and the density of partial states (PDOS) have been 
calculated by first-principles based on the density function theory. To gain more knowledge about 
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physical characteristics of orthorhombic SnZrS3 compound, the energy band structures were 
calculated along with specials lines connecting the high symmetry points in the first Brillouin zone. 
The internal coordinates of these highest symmetry points G, Z, T, Y, S, X, U, and R are (0, 0, 0), 
(0, 0, 0.5), (-0.5, 0, 0.5), (-0.5, 0, 0), (-0.5, 0.5, 0), (0, 0.5, 0), (0, 0.5, 0.5) and (-0.5, 0.5, 0.5) in the 
first Brillouin zone, respectively. The calculated energy band structure along the high symmetry 
directions in the first Brillouin zone of orthorhombic SnZrS3 the using the GGA+PBE functional at 
ambient pressure and 10 GPa are shown in Fig. 4. From the figure, it is seen that at zero pressure 
the top of the valence band (VB) is at T symmetry point, while the bottom of the conduction band 
(CB) is located at G point. The calculated band gap of the material at zero pressure (1.14 eV) is 
similar to most theoretical calculations34. And we found that our computed results of the bandgap 
values at the level of the GGA+PBE approach are in nice agreement with the available 
experimental result of 1.18 eV. From the plot of the band structure, one can see that orthorhombic 
SnZrS3 at zero pressure is an indirect bandgap semiconductor. A similar band gap nature for the 
compound at zero pressure is also reported by a recent work of N. B. Bellil et al, which confirms 
our results10. Interestingly, when we increase pressure, the top of the VB at T shifts to the Fermi 
level, while it shifts away from the Fermi level at G symmetry point; transforming the material to a 
direct band gap (G-G) at the pressure up to 10 GPa. The conversion from indirect to direct band 
gap of chalcogenide perovskite compounds with pressure predicts some interesting theoretical 
results, which shows its effectiveness in high frequency optoelectronic devices applications34-35.  

 

 
 

Fig. 4. The band structures of the orthorhombic SnZrS3 at 0 GPa, and 10 GPa, respectively.  
The red dashed line is marked the Fermi level. 

 
 
Moreover, the total and partial density of states provide more details about the electronic 

properties of atoms and orbitals. To further elucidate the nature of the electronic band structure, the 
total density of states (DOS) and partial density of states (PDOS) of orthorhombic SnZrS3 under 0 
GPa, and 10 GPa are shown in Fig. 5. The states near the valence band top are derived from S 3p, 
Zr 4d, Sn 5p, and Sn 5s orbitals, and the lowest conduction band is composed of Zr 4d, S 3p, and 
Sn 5p orbitals. These results agree with the previous calculation results36. However, as the pressure 
increases, the conduction and valence band shift to lower and higher energies, respectively. This 
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energy shift results in the decrease of band gap substantially, which are in agreement with band 
structures and explain the band structures as well. The reason for this is likely to be that the 
distance between the atoms decreases under the effect of high pressure, which leads to a change in 
the atomic orbitals occupied by electrons, which results in the appearance of new hybridizations 
between different elements. The pressure dependence of the band gap is shown in Fig. 6, clearly 
indicating the band gap decrease with increasing pressure. To determine the pressure coefficient, 
we fitted the direct band gap to determine the pressure coefficient, we fitted the direct band gap 
(Eg(P)) with a quadratic function: Eg(P)=Eg(0)+aP+bP2, and obtained a=-0.107 eV/GPa and 
b=0.002 eV/(GPa)2.  

 

 
 

Fig. 5. The density of state (DOS) and partial density of state (PDOS) of the orthorhombic SnZrS3  
at 0 GPa, and 10 GPa, respectively. The red dashed line is marked the Fermi level. 

 

 
 

Fig. 6. The pressure variations of energy band gaps for orthorhombic SnZrS3. 
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4. Conclusion 
 
Structural parameters, mechanical, and electronic properties of orthorhombic SnZrS3 have 

been investigated up to 10 GPa, based on the first-principles density functional theory. It is found 
that at zero pressure, the structural parameters are in good agreement with the experimental results. 
By increasing pressure; the lattice constant as well as cell volume decrease with the increasing 
pressure. The single crystal elastic constants of the orthorhombic SnZrS3 increased with increasing 
pressure match the Born stability criteria. The polycrystalline elastic modulus exhibit a 
monotonous behavior under pressure. According to Pugh’s criterion and Poisson’s ratio, it is found 
that the transition from the brittle to ductile material and the mechanical properties exhibit a 
monotonous behavior under pressure. Meanwhile, the pressure dependence of the electronic band 
structure, density of states and partial density of states of orthorhombic SnZrS3 were presented. 
The compound exhibits indirect band gap nature at zero pressure, while by increasing pressure the 
band gap shifts from indirect to direct. According to our work, we found that the band gap 
decreases with the pressure, which provide some additional information about these chalcopyrite 
semiconductors under pressure to fundamental material physics.  
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