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The original concept of Fibonacci’s series is extended to allow more realistic physical
conditions (i.e. limited lifespans and different male/female ratios) for the growth of a
given population (bacteria, animals, grain in metals, etc.). From these extended
fibonacci’s sequences is possible to define and construct new golden numbers which may
be found in a wider range of natural phenomena because of the infinite possibilities of the
evolution (increase and decrease population index) parameters. The generalized
mathematical rules which govern the behavior are obtained, as well as a master curve for
extended “golden means” oy, are deduced.
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Back in the year 1202, the italian matemathician Leonardo Fibonacci™ was intrigued by
the way rabbits breed. Indeed, it is known that at the age of one month a female rabbit is fertile so
after only two months an extra couple of rabbits will be suitable for reproduction, and so on. By
assuming that no rabbit would die and that each month exactly a male and a female are produced,
one can ask how many couples will exist after, let us say, a year. This gentleman did not only
found the answer (i.e. 233), but discovered the sequence of numbers that bear his name: the
Fibonacci sequence: 1, 1, 2, 3, 5, 8, 13, 21, ... which describes the number of couples after each
generation of animals. Notice that each number in the series is the summation of the two numbers
preceding it. Later, during the XIX century, the french scholar Edouard Lucas[2] studied further
this sequence and extended the concept to what he called “Fibonacci’s general series”, consisting
of all sequences that can be produced by the above simple summation rule. For example, in the
original Fibonacci’s series, the two first numbers are 1 and 1, whereas in Lucas” version are 2 and
1, and so forth.

Fibonacci’s numbers present fascinating properties and applications®**! among which one
can mention: the possibility of calculating = from them!®!, their use to deduce the Pythagoras
figurest®®, the diffraction problem in Opticst”, phyllotaxis***®, etc. Nevertheless, perhaps the
most fascinating property of these series is that the ration between one member of the sequence
and the previous one, converge to ¢ = 1.618033...., the so-called “golden mean”, so dear to the
ancient cultures? that used it in architecture, poetry, mathematics, etc.. Moreover, the
convergence behavior can be also be extended to negative numbers, where the ratio will be now 1-
o, as graphically depicted in Figure 1, where the i member of the Fibonacci’s series is represented
by Fib(i).
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Fig. 2. Master curve of ¢, for values of e a between -3 and 3.

In the literature it is often claimed that Fibonacci’s series describe the growth of most
biological systems, from larvae to human urban populations®. However, as it has been explained
above, this series is limited to ideal cases (no deaths and exactly 1 male and 1 female in each
generation) with a growth step (ie. number of couples in each genetarion) of 1. In the case of a
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growth step of 2, the new series is 1, 2, 6, 16, 44, 120, 328, 896, ..., where now each number in the
sequence is the product of the two previous ones. The ratio now is ¢, = 2.732050.... Notice that
the index describes the step size (therefore, Fibonacci’s original series would be represented by
¢1). For step size 3, the resulting series is 1, 3, 12, 45, 171, 648, 2,457, 9,315...and @3 =
3.791287...

This can be generalized to the case of generations consisting of a individuals, as
summarized in Table 1, where the a negative values imply, obviously, a decrease of the
population. The general rules to build the number of individuals present in the i-generation (n;) are:

i>0 Ny = |a|(ni—l +n;) 1)

i<0y a>0 n., =-1""

a'|(ni+1 +ni) (2)

i<O0y a<0 Niy = 1" |a|(ni+1 +n,). @)

_ +./ 1 4)
||m n|+1 =(Da|’|| _3' |a| |a| a|+ (4)

s, - a| 2

n =a |¢al |i - (_|¢al |)7i

' JIaldal+4)

(5)

In equation (4), @, represents the ratio of a number and the preceeding one when i > 0,
whereas @, IS the result for i < 0. It must be noticed that the formula is completely general, for it
includes irrational and fractional numbers (for example, @y = 1 when a = 0.5). The ration a/|a|
includes the sign and it can be employed to produce a master curve for @, as in Figure 2.

Table 1. First two growth series (a =-2; a=-1)
and two decrease ones (a = 1, standard Fibonacci ; a =2)

a
a=-2 a=-1 a=1 a=2
N4 32 3 -3 -32
N3 -12 -2 2 12
n. 4 1 -1 -4
N1 -2 -1 1 2
Ni|  No 0 0 0 0
ny -2 -1 1 2
n, -4 -1 1 4
N3 -12 -2 2 12
N4 -32 -3 3 32
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Table 2. Values of ¢, provided a is an integer.

a Qal Qall Qal + Qal
0 0 0 0
1 1,618033988738 -0,618033988750 1
2 2,732050807569 -0,732050807569 2
3 3,791287847478 -0,791287847478 3
4 4,828427124746 -0,828427124746 4
5 5,854101966250 -0,854101966250 5
6 6,872983346207 -0,872983346207 6
7 7,887482193696 -0,887482193696 7
8 8,898979485566 -0,898979485566 8
9 9,908326913196 -0,908326913196 9
10 10,916079783100 -0,916079783100 10

Table 2 contains some specific examples that illustrate the behavior of the series. Indeed, as a
grows:

1. @2 goes to a+1 when i goes to oo;
2. @an goes to -1;
3. Qar + Pa = a.

As for equation (5), it allows to obtain the i term of the series. By using a generalization of
Binets’s formula®* it is posible to find a given term without a previous knowledge of any other.
However, Binet’s formula is only valid when a is an integer. Thus, for the general case of a being
a non-integer, equations (1) through (3) must be employed and this possibility enable us to
construct extended fibonacci growth sequences.

Notice also that, for a given a, the starting two numbers of the series are arbitrary and the
ratio converges to @,, as in the original Fibonacci sequence. This is summarized in Table 2.

Since in the generalized series the growth can be either positive or negative, one can relate

the Fertility Index, Fy, used in census science, to @,-1, when a >0 and @4 +1 when a <0, since they

represent the rate of growth (F, > 0) or decrease (F, < 0) of the population, thus allowing to predict
population dynamics in many physical systems. In particular, it is interesting to point out that
¢a=1whena=0.5, and F, = 0. Physically, this indicates that the population is not growing. The
same situation occurs when a = -0.5, ¢, =-1, so F; = 0. In other words, for |[aj >0.5F, >0 .

Conclusions

By starting from the fundamental mathematical properties of the Fibonacci’s series, it is
posible to construct more generalized growth patterns that take into account that: individuals have
a limited lifespan, their reprodcutive age is limited, the reproduction rhythms varies among
individuals (as, for instance, the numer of offsprings). This possibility enable us to construct
extended fibonacci growth sequences and from this fact to define a new set of golden numbers
(actually an infinite set) which opens new points of view on our conceptions of armony and
beauty. Also, with the above model, only few generations are requiered to have a very good idea
of the population dynamics and the probability of catastrophes (i.e. sudden and sharp increases or
decreases) can also be evaluated.
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